Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Study on Reducing Gear Rattle Noise Based on Sensitivity Analysis of Drivetrain Torsional Model

2017-06-05
2017-01-1779
With drastically reduction of engine noise, the gear rattle noise generated by the impact between neutral gears inside transmission can be much easily perceived. It is well known that the torsional mode has a direct relationship with the transmission gear rattle noise. This paper establishes a torsional model of a front wheel drive automotive drivetrain, including clutch system, transmission box and equivalent load of a full vehicle, in AMESim software. The experimental engine speed fluctuations at different gears are used to excite the torsional model. The influences of several parameters, including flywheel inertia, clutch stiffness, clutch hysteresis and drive shaft stiffness, on the 2nd order (major engine firing order for a 4-cylinder-4-stroke engine) torsional resonant frequency and the 2nd order torsional resonant peak of the transmission input shaft are analyzed by changing them alternatively.
Technical Paper

Study on the Bending Vibration of a Two-Piece Propeller Shaft for 4WD Driveline

2015-06-15
2015-01-2174
Currently, four wheel drive (4WD) system is widely used in Sports Utility Vehicle (SUV) due to the increasing demand of fuel efficiency and dynamic performance by customers. However, propeller shaft consisting of different universal joints and tubes on 4WD vehicle easily induces low frequency bending vibration. This paper analyzes the characteristics of driveline bending vibration of a 4WD vehicle and provides control methods to reduce the low frequency vibration caused by propeller shaft bending resonances. Firstly, the driveline bending vibration model of the 4WD vehicle is established using FEA method and the natural frequencies are calculated. Secondly, the influence parameters, such as universal joint, relative length of two-piece propeller shaft, and tube diameters, on bending frequencies are analyzed by both FEA analysis and physical testing.
Technical Paper

Surge Noise Identification and Control of Automotive Turbochargers

2014-06-30
2014-01-2053
The paper describes the identification and control methods of turbocharger surge noise. Some parameters, such as temperature, flow quantity, pressure, vibration, turbocharger rpm and noise, are provided to identify surge noise. The advantages and disadvantages for each parameter are analyzed. The paper identifies that some special vehicle interior noise is contributed by turbocharger surge noise by using correlation analysis of the turbocharger inlet temperature, outlet pressure and vehicle internal noise. Spectral filtration analysis shows that the surge noise frequency components are above 1000Hz with wide frequency band. Quarter wave tuner's effective frequency range is found to be consistent with the surge noise frequency band. A panfluter-resonator which is a combination of several special quarter wave tuners is invented to diminish the wide band high frequency noise.
Technical Paper

Multi-Body Dynamic Analysis of Driveline Torsional Vibration for an RWD Vehicle

2014-06-30
2014-01-2064
The paper analyzes the characteristics of driveline torsional vibration of a RWD vehicle and provides the control methods of transmission rattle noise caused by the system torsional resonances. A driveline dynamic model of the RWD vehicle is established by multi-body dynamic method. The natural frequencies and modal shapes are calculated for each gear position and torsional vibration responses are predicted by forced vibration analysis. The system sensitivity and DOE are analyzed based on the parameterized stiffness, inertia and damping. The 2nd and 3rd order modal results show that the transmission shaft possesses the maximum amplitudes and its corresponding modal frequencies vary with different gear position. The sensitivity analysis results show that the system torsional vibration is significantly reduced by reducing clutch stiffness, increasing propeller shaft stiffness, raising half shaft stiffness, increasing the input shaft inertia and increasing the clutch damping.
Technical Paper

Flow Excited Noise Analysis of Exhaust

2005-05-16
2005-01-2352
This paper introduces a cumulative effort on the phenomenon of exhaust flow exited noise. The mechanisms of engine combustion noise via the exhaust system and flow excited noise are analyzed. Engine combustion noise contributes most to tailpipe noise at lower engine speed while flow excited noise dominates the tailpipe noise at high engine speed. WAVE model, a one dimension CFD and Acoustics model, is used to distinguish the engine combustion noise and flow excited noise. Both CAE and tests based results are used to draw conclusions. The influence of single system and quasi-dual system on the tailpipe noise is compared with each other. The paper analyzes the balance of different diameter pipes to achieve the desired sound at different rpm range. The evaluation balance between interior sound and tailpipe noise is described.
Technical Paper

Influence of Vehicle Exhaust Y-Pipe on Tailpipe Noise

2003-05-05
2003-01-1657
This paper analyzes the relation between sound pressure at tailpipe and exhaust Y-pipe structure. The length of Y-pipe influences sound order distribution that influences customers' responsiveness of sound. The equal Y-pipe remains the firing order and its harmonic contents while suppressing the half order and other whole order sounds. Various lengths of equal Y-pipe also influence the magnitude and frequency distribution of tailpipe noise. An air-to-air (induction-engine-exhaust) CAE model is built to predict tailpipe noise using up-to-date software. The real air-to-air model simulation shows that the 3rd and 6th orders are the dominating contents for equal Y-pipe exhaust system in 6-cylinder engine applications. The sound pressure of the half order contents increases with the length difference between two branches of a Y-pipe. The results are useful for exhaust Y-pipe design.
Technical Paper

Exhaust System Robustness Analysis Due to Flex Decoupler Stiffness Variation

2003-05-05
2003-01-1649
The function of flex decoupler is to reduce the vibration transferred from the engine to the vehicle body. The stiffness of the flex decoupler is a key parameter in the vibration control. This paper deals with decoupling exhaust hot end and cold end to minimize vibration transfer. A computer aided engineering (CAE) based design of experiment (DOE) is used to investigate the coupling stiffness. A finite element model is built to analyze the exhaust vibration responses. Robustness of the exhaust system is analyzed. The analysis reveals that vertical stiffness of the flex decoupler is the key parameter for the hanger force response. The main control factors for exhaust vertical and lateral bending frequencies are vertical and lateral stiffnesses of the decoupler, respectively.
Technical Paper

Attribute Analysis and Criteria for Automotive Exhaust Systems

2003-03-03
2003-01-0221
This paper summarizes the attributes of automotive exhaust system and provides a guideline for exhaust system design, analysis and development. The exhaust system has various attributes including vibration, acoustics or noise, durability and thermal distribution, flow and power loss, emission, in addition to its interface with vehicle. This paper describes all these attributes and the corresponding performances, and develops criteria for each of the attributes. The paper also describes the interfaces between the exhaust system and powerplant with body structure.
X