Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Study for Generating Power on Operating Parameters of Powerpack Utilizing Linear Engine

2012-10-23
2012-32-0061
The research shows the experimental results for a free piston linear engine according to operation conditions of the linear engine and the structure of linear generator for generating electric power. The powerpack used in this paper consists of the two-stroke free piston linear engine, linear generators and air compressors. Each parameter of fuel input heat, equivalence ratio, spark timing delay, electrical resistance and air gap length were set up to identify the combustion characteristics and to examine the performance of linear engine. The linear engine was fueled with propane. In the course of all linear engine operations, intake air was inputted under the wide open throttle state. Air and fuel mass flow rate were varied by using mass flow controller and these were premixed by pre-mixing device. Subsequently, pre-mixture was directly supplied into each cylinder.
Technical Paper

The Effects of Spark Timing and Equivalence Ratio on Spark-Ignition Linear Engine Operation with Liquefied Petroleum Gas

2012-04-16
2012-01-0424
A prototype of a small, spark-ignition free-piston engine combined with a linear alternator was designed to produce electric power for portable usage. It has a bore size of 25 mm and maximum stroke of 22 mm. The engine was fueled with liquefied petroleum gas consisting of 98% propane. The electric power generated by the linear alternator is a function of the piston dynamics and the electric conductance. Therefore, the purpose of current research is to investigate the effects of the basic engine controlling parameters such as the equivalence ratio of the mixture and the spark timing on the piston dynamics and study the relationship with the electric power generation performance. The equivalence ratio of the mixture was varied from 1.0 to 1.72, while the spark timing was varied at 3, 4, and 5 mm away from the maximum top dead center. Operating characteristics, namely, indicated mean effective pressure, electric power output, operating frequency and piston stroke were analyzed.
X