Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Analytical Assessment of the CO2 Emissions Benefit of Two-Stroke Diesel Engines

2016-04-05
2016-01-0659
Two-stroke diesel engines could be a promising solution for reducing carbon dioxide (CO2) emissions from light-duty vehicles. The main objective of this study was to assess the potential of two-stroke engines in achieving a substantial reduction in CO2 emissions compared to four-stroke diesel baselines. As part of this study 1-D models were developed for loop scavenged two-stroke and opposed piston two-stroke diesel engine concepts. Based on the engine models and an in-house vehicle model, projections were made for the CO2 emissions for a representative light-duty vehicle over the New European Driving Cycle and the Worldwide Harmonized Light Vehicles Test Procedure. The loop scavenged two-stroke engine had about 5-6% lower CO2 emissions over the two driving cycles compared to a state of the art four-stroke diesel engine, while the opposed piston diesel engine had about 13-15% potential benefit.
Technical Paper

Effect of High Levels of Boost and Recirculated Exhaust Gas on Diesel Combustion Characteristics at Part Load

2014-04-01
2014-01-1245
Future diesel combustion systems may operate with significantly higher levels of boost and EGR than used with present systems. The potential benefits of higher boost and EGR were studied experimentally in a single-cylinder diesel engine with capability to adjust these parameters independently. The objective was to study the intake and exhaust conditions with a more optimum combustion phasing to minimize fuel consumption while maintaining proper constraints on emissions and combustion noise. The engine was tested at four part-load operating points using a Design of Experiments (DOE) approach. Two of the operating points correspond to low-speed and low-load conditions relevant for the New European Driving Cycle (NEDC). The other two points focus on medium load conditions representative of the World-wide harmonized Light-duty Test Procedures (WLTP).
X