Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Optimized Driving Cycle Oriented Control for a Highly Turbocharged Gas Engine

2019-04-02
2019-01-0193
The article is focused on a 1-D drive dynamic simulation of a highly turbocharged gas engine. A mono fuel CNG engine has been developed as a downsized replacement of the diesel engine for a medium size van. The basic engine parameters optimization is provided in a steady state operation and a control adjustment is applied to a dynamic vehicle model for a transient response improvement in highly dynamic operation modes of the WLTC (world light duty test cycle), selected for investigation. Vehicle simulation model with optimized control system is used for driving cycle fuel consumption and CO2 emissions predictions compared with the basic engine settings.
Technical Paper

Scavenged Pre-Chamber Volume Effect on Gas Engine Performance and Emissions

2019-04-02
2019-01-0258
This work presents development and results of experimental and numerical investigations of an advanced ignition system with a scavenged pre-chamber for a natural gas fueled engine with a bore of 102 mm and stroke of 120 mm. Two combustion concepts are taken into account. The lean burn concept is used to minimize engine out emissions of nitric oxides (NOx) and to achieve high thermal efficiency at low load. The in-house designed scavenged pre-chamber enables the engine to be operated up to the air-excess ratio (lambda) of 2. A stoichiometric (lambda=1) operation is also possible. It is compatible with a three-way catalyst concept, at high load and potentially transient modes and can provide as high as possible engine power density. The influence of the scavenged pre-chamber volume on the combustion and performance within the range of the operational points of the naturally aspirated engine is presented in this paper.
Technical Paper

Analysis of Scavenged Pre-Chamber for Light Duty Truck Gas Engine

2017-09-04
2017-24-0095
An ongoing research and development activities on the scavenged pre-chamber ignition system for an automotive natural gas fueled engine is presented in this paper. The experimental works have been performed in engine laboratory at steady state conditions on a gas engine with 102 mm bore and 120 mm stroke, converted to a single cylinder engine. The in-house designed scavenged pre-chamber is equipped with a spark plug, fuel supply and a miniature pressure sensor for detailed combustion diagnostics. The engine was operated at constant speed, fully open throttle valve and four different fueling modes with or without spark discharge. A partly motored mode allowed direct evaluation of the pre-chamber heat release. The experimental data acquired in this research served as a validation data for the numerical simulations. The performed tests of prototypes and calculations have recently been expanded to include 3-D flow calculations in the Ansys Fluent software.
Technical Paper

Influence of Natural Gas Composition on Turbocharged Stoichiometric SI Engine Performance

2012-09-10
2012-01-1647
In certain applications, the use of natural gas can be beneficial when compared to conventional road transportation fuels. Benefits include fuel diversification and CO₂ reduction, allowing future emissions regulations to be met. The use of natural gas in vehicles will also help to prepare the fuel and service infrastructure for future transition to gaseous renewable fuels. The composition of natural gas varies depending on its source, and engine manufacturers must be able to account for these differences. In order to achieve highly fuel flexible engines, the influence of fuel composition on engine properties must first be assessed. This demand is especially important for engines with high power densities. This paper summarizes knowledge acquired from engine dynamometer tests for different compositions of natural gas. Various levels of hydrocarbons and hydrogen in a mixture with methane have been tested at full load and various engine speeds.
Technical Paper

Heat Release Regression Model for Gas Fuelled SI Engines

2004-03-08
2004-01-1462
New regression approach for heat release pattern prediction for various operating conditions for gas fuelled SI engines has been developed and verified. This procedure has been implemented in our engine working cycle simulation code. Crankshaft angle positions of combustion start-point, maximum rate-of-heat-release point and combustion end-point are expressed by the use of regression method as the function of engine operating point specification. Base heat-release pattern is employed in the model in a tabular form. The pattern at a new operating point is derived by stretching the pattern along the crank angle coordinate, fitting it in the most relevant points of the heat release pattern. The regression model is based on the results of experiments of both homogeneous stoichiometric and lean burn SI turbocharged engines fuelled by natural gas.
X