Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Integration of an E85 Reforming System into a Vehicle-Ready Package and Project Results

2014-04-01
2014-01-1191
Ethanol can be converted into a 1:1:1 mixture of H2, CO, and CH4 at 300°C using a copper-nickel catalyst, a process known as “low-temperature ethanol reforming.” The hydrogen content of this mixture enables an engine to operate lean or with high levels of EGR, improving fuel economy and emissions. An onboard ethanol reformer- a catalyst module providing heat exchange with exhaust-was recently reported and shown to exhibit stable high conversion of ethanol driven by exhaust heat. This paper describes the successful integration and operation of a Ford 3.5L 3 TiVCT flex-fuel engine with a compact reformer and auxiliary hardware, fueled by E85. The system constitutes an integrated power system suitable for vehicle integration. The engine was operated on a mixture of E85 and reformate using a stoichiometric air-fuel ratio with internal EGR at a 12:1 compression ratio.
Journal Article

High Efficiency, Low Feedgas NOx, and Improved Cold Start Enabled by Low-Temperature Ethanol Reforming

2010-04-12
2010-01-0621
Two major barriers to wider use of ethanol as an engine fuel are ethanol's low heating value per volume relative to gasoline and higher hydrocarbon emissions at startup. Ethanol provides about one-third lower fuel economy than gasoline on a volumetric basis if the two fuels are utilized with equal efficiency, making ethanol less attractive to consumers. In addition, it is difficult to meet emissions standards such as SULEV when using E85 or hydrous ethanol, because ethanol's low volatility and high heat of vaporization compared to gasoline result in incomplete combustion when the engine is cold. A catalyst consisting of a copper-plated nickel sponge has recently been developed that enables ethanol to be reformed at around 300°C to a mixture of hydrogen (H₂), carbon monoxide (CO), and methane (CH₄). This low reforming temperature enables heat to be supplied from the engine exhaust.
X