Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Engineering Approach to Predict Fracture and Tearing

2011-04-12
2011-01-0002
An engineering approach was developed to extract the failure plastic strain, thinning failure strain, and major in plane failure strain for finite element simulation applications. This approach takes into account the failure strain dependency on the element size when element deletion scheme is invoked in the simulation of material fracture. Both localized necking fracture and tensile shear fracture can be predicted when appropriate elements and material models are used in LS-DYNA simulations. This leads to a more accurate prediction of fracture and tearing in the finite element simulation of vehicle structure and crash loading conditions.
Technical Paper

Bake-Hardening Effect of Dual Phase Steels

2009-04-20
2009-01-0796
Tensile tests were performed on DP600 and DP780 dual-phase steels to determine the relative effects of bake-hardening on the static and dynamic material response. The quasi-static test variables were prestrain level, specimen orientation (longitudinal, transverse), and heat treatment (as-received, bake hardened). Dynamic tests were performed at rates ranging from 0.001/s to 500/s, with variables of prestrain level and heat treatment. Increases in the ultimate and yield strength for both DP600 and DP780 were mainly due to prestrain and strain rate effects. The bake-hardening effects varied with the material, amount of prestrain, and strain rate. Crush tests were also performed on DP780 tubes in the as-received and bake-hardened conditions at rates ranging from quasi-static up to 7250 mm/s. The energy absorption was similar regardless of the rate.
X