Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Design and Implementation of Digital Twin for Predicting Failures in Automobiles Using Machine Learning Algorithms

2019-10-11
2019-28-0159
The drastic technological advancements in the field of autonomous vehicles and connected cars lead to substantial progression in the commercial values of automobile industries. However, these advancements force the Original Equipment Manufacturers (OEMs) to shift from feedback-based reactive business analysis to operational-data based predictive analysis thereby enhancing both the customer satisfaction as well as business opportunities. The operational data is nothing but the parameters obtained from several parts of an automobile during its operation such as, temperature in radiator, viscosity of the engine oil and force applied over the brake disk. These operational data are gathered using several sensors implanted in different parts of an automobile and are continuously transmitted to backend computers to develop Digital Twin, which is a virtual model of the physical automobile.
Technical Paper

Theoretical Analysis of High Thermal Conductivity Polymer Composite Fin Based Automotive Radiator under Forced Convection

2018-07-09
2018-28-0099
Though high thermal conductivity polymer composites are prepared based on the thermal requirements, the effectiveness and overall heat transfer performance of the radiators have to be addressed comprehensively to validate the concerned efforts taken to prepare the high thermal conductivity polymer composites. In this article, theoretical analysis on the thermal performance of the cross flow type heat exchanger under convection is performed only by concentrating on the term thermal conductivity of the material. Micro channel based geometry is extracted from the given heat exchanger problem to reduce the complexities of simulation. The term cooling system performance index (CSPI) is used to achieve the expected targets in the present investigation. For shorter fins, the effect of thermal conductivity on the cooling system performance index under lower Reynolds number is insignificant.
Technical Paper

Cooling System Optimisation of a Multi - Point Fuel Injection Engine

2016-02-01
2016-28-0085
In Conventional internal combustion engine cooling system, the coolant pump is belt-driven by the engine crankshaft. The direct coupling between engine and cooling pump results in an excessive flow of cooling fluid at part-load conditions and waste of energy in running the pump at engine cold start, which affects the engine efficiency and, as a consequence, the global fuel consumption. A study has been conducted on a Maruti 800cc MPFI engine cooling system in order to find a way to reduce common overheating problems at idle conditions and intermediate engine speeds with restricted airflow. The study involves testing of an engine radiator in a wind tunnel (calorimeter) to simulate the actual driving conditions. The coolant flow rate, pressure, and temperature characteristics were monitored at different positions in the cooling system while engine speed and load was varied. Engine performance test were carried out for different radiator ram air speeds.
X