Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Fatigue Life Prediction of Heavy Duty Automobile’s Brake Drum through Coupled Thermo-Mechanical Analysis

2019-10-11
2019-28-0031
The aim of this paper is to demonstrate the methodology to simulate the induced stresses/strains due to thermo-mechanical loading of automobile brake drum.. The brake drum undergoes mechanical load due to applied brake pressure and thermal load due to friction generated between brake pad and brake drum while brake is applied. This coupled thermo-mechanical loading affects the life of the brake drum as the stiffness of the brake drum is reduced. The conventional method of simulating this problem is done using Lagrangian discretization in which the load is applied and inertia effect due to angular velocity is applied to a drum at static condition. In contrast, in this paper Eulerian discretization is adopted for finite element analysis, in which drum brake model is discretized as spatially dependent that facilitates actual rotation of brake drum with simultaneous application of brake load resulting more precise simulation.
Technical Paper

Design and Implementation of Digital Twin for Predicting Failures in Automobiles Using Machine Learning Algorithms

2019-10-11
2019-28-0159
The drastic technological advancements in the field of autonomous vehicles and connected cars lead to substantial progression in the commercial values of automobile industries. However, these advancements force the Original Equipment Manufacturers (OEMs) to shift from feedback-based reactive business analysis to operational-data based predictive analysis thereby enhancing both the customer satisfaction as well as business opportunities. The operational data is nothing but the parameters obtained from several parts of an automobile during its operation such as, temperature in radiator, viscosity of the engine oil and force applied over the brake disk. These operational data are gathered using several sensors implanted in different parts of an automobile and are continuously transmitted to backend computers to develop Digital Twin, which is a virtual model of the physical automobile.
Technical Paper

Modeling and Simulation for Hybrid Electric Vehicle with Parallel Hybrid Braking System for HEV

2018-07-09
2018-28-0097
A model for Hybrid electric vehicle power train with parallel hybrid braking system has been constructed. The hybrid vehicle utilized is based on integrated motor assist power train developed by Honda co utilized in Honda Insight car. The model is implemented using empirical formulation and power control schemes. A power control strategy based on throttle position (% throttle) and brake pedal position (% braking) is used. It incorporates the parallel hybrid braking system for the hybrid electric vehicle. The model allows for real time evaluation of wide range of parameters in vehicle operation as HEV without parallel hybrid braking system (PHBS) and with PHBS. Due to regenerative braking the structure design and control of braking system for HEV is different from conventional vehicle. The PHBS is the good option to provide safety of the vehicle and simultaneously recover reasonable amount of braking energy.
X