Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Performance of Gasoline Compression Ignition (GCI) with On-Demand Reactivity Enhancement over Simulated Drive Cycles

2018-04-03
2018-01-0255
Gasoline compression ignition (GCI) combustion is a promising solution to address increasingly stringent efficiency and emissions regulations imposed on the internal combustion engine. However, the high resistance to auto-ignition of modern market gasoline makes low load compression ignition (CI) operation difficult. Accordingly, a method that enables the variation of the fuel reactivity on demand is an ideal solution to address low load stability issues. Metal engine experiments conducted on a single cylinder medium-duty research engine allowed for the investigation of this strategy. The fuels used for this study were 87 octane gasoline (primary fuel stream) and diesel fuel (reactivity enhancer). Initial tests demonstrated load extension down to idle conditions with only 20% diesel by mass, which reduced to 0% at loads above 3 bar IMEPg.
Journal Article

Spray Visualization and Characterization of a Dual-Fuel Injector using Diesel and Gasoline

2014-04-01
2014-01-1403
This paper focuses on the spray and atomization characteristics of a Dual-Fuel Injector (DFI) which includes a primary and a secondary fuel inlet. Three injectors were analyzed in this study. Apart from the DFI, two conventional diesel injectors were tested as baselines for comparison - a piezo-electric and a solenoid injector. The rail pressures ranged from 200 - 500 bar for the conventional injectors. The DFI was tested first as a single-fuel injector (by sealing the secondary inlet) at pressures ranging from 100 - 300 bar, and then in its dual-fuel mode with the primary inlet pressure ranging from 100 - 300 bar, and the secondary inlet at 25 bar higher than the primary pressure. Injection duration of 0.5 ms was chosen for the experiment. High-speed Mie scattering images were recorded to capture the spray evolution. Phase Doppler Anemometry (PDA) measurements were conducted at different locations in the spray for the acquisition of droplet sizes and velocity distributions.
Technical Paper

Adaptive PCCI Combustion Using Micro-Variable Circular-Orifice (MVCO) Fuel Injector – Key Enabling Technologies for High Efficiency Clean Diesel Engines

2009-04-20
2009-01-1528
This paper presents the latest results for a new high efficiency clean diesel combustion system – Adaptive PCCI Combustion (a premixed charge compression ignition mixed-mode combustion) using a micro-variable circular orifice (MVCO) fuel injector. Key characteristics of the new combustion system such as low NOx and soot emissions, high fuel efficiency, increased engine torque are presented through KIVA simulation results. While early premixed charge compression ignition (PCCI) combustion reduces engine-out NOx and soot, it's limited to partial loads by known issues such as combustion control, high HC and CO, and high pressure rise rate, etc. Conventional combustion is well controlled diffusion combustion but comes with high NOx and soot. Leveraging the key merits of PCCI and conventional combustion in a practical engine is both meaningful and challenging.
Technical Paper

Comparing the Operation of a High Speed Direction Injection Engine Using MVCO Injector and Conventional Fuel Injector

2009-04-20
2009-01-0718
The operation of a small bore high speed direct injection (HSDI) engine with a MVCO injector is simulated by the KIVA 3V code, developed by Los Alamos National Laboratory. The MVCO injector extends the range of injection timings over conventional injectors and it extra flexibility in designing injection schemes. Combustion from very early injection is observed with MVCO injections but not with conventional injection. This improves the fuel economy of the engine in terms of lower ISFC. Even better efficiency can be achieved by using biodiesel, which may be due to extra oxygen in the fuel improving the combustion process. Biodiesel sees a longer ignition delay for the initial injection. It also exhibits a faster burning rate and shorter combustion duration. Biodiesel also lowered both NOx and soot emissions. This is consistent with the general observation for soot emissions.
X