Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Study of the Glass Contribution to the Interior Acoustics of a Car and Related Countermeasures

2020-09-30
2020-01-1585
This paper shows that the combination of a glass and passive acoustic treatment manufacturers can bring different benefits and considerably improve the interior acoustics of a vehicle. Glazing contributes to the design of the vehicle in addition to its primary role, good visibility and safety. From an acoustic point of view, this brings a challenge for the interior comfort. Indeed, glazing has no absorption and classically has an acoustic insulation weakness around its coincident frequency. In most of the cases, these different aspects make glazing one of the main contributors to the sound pressure level in the passenger compartment, and the trend is not one of change. However, there are possible countermeasures. One of which is the use of laminated glazing with acoustic PVB. This solution allows reducing the loss of insulation performance at the coincidence frequency. The other is the usage of passive interior acoustic trims.
Technical Paper

On Some Important Practical Aspects Related to the Measurement of the Diffuse Field Absorption Coefficient in Small Reverberation Rooms

2013-05-13
2013-01-1972
The use of small reverberation rooms for the measurement of the Diffuse Field Absorption Coefficient (DFAC) is common practice in the automotive industry. Such practice brings with itself a few issues, related to the limited size of the measurement environment. Some of these issues (e.g. measurements’ repeatability and reproducibility) have already been thoroughly investigated in articles published at past SAE NV Conferences. This paper intends to focus on some other “minor” aspects related to the measurement of DFAC in small reverberation rooms that so far have received little attention but that can, anyhow, have a non-negligible influence on the measurement results, in particular when they have to be compared to target curves.
Technical Paper

An SEA-based Procedure for the Optimal Definition of the Balance between Absorption and Insulation of Lightweight Sound Package Parts

2012-06-13
2012-01-1527
Due to the pressure on CO₂ reduction, during the last years "lightweight" parts have become rather popular, as opposed to "conventional" parts, traditionally constituted by a heavy mass layer on top of a soft decoupler. While "conventional" parts are based on pure insulation, "lightweight" parts propose some kind of compromise between absorption and insulation. This makes their design difficult: designing a "lightweight" part means adjusting in the proper way the balance between the absorption and the insulation provided by the part itself and the search for an optimal balance has to take into account relevant vehicle-dependent boundary conditions. Typically, in the design of a lightweight dash insulator a key role is played by the presence of the instrumentation panel and by the importance of the pass-throughs. This article describes a procedure that can help the NVH engineer in the above-mentioned task.
Technical Paper

FE Analysis of a Partially Trimmed Vehicle using Poroelastic Finite Elements Based on Biot's Theory

2007-05-15
2007-01-2330
A poroelastic material can be represented as a material that is constituted by two phases: a structural phase given by a solid frame, and a fluid phase given by the air that fills the pores of the solid frame itself. In the mid frequency range, the physical behavior of both phases and their interactions need to be properly modeled in order to predict accurately the dynamic behavior of the porous material. This can be done using finite elements based on Biot's theory, which describes the macroscopic behavior of poroelastic materials by characterizing them through a set of parameters directly measured on material samples. In this paper, numerical/experimental correlations obtained using two commercial software programs that implement libraries of poroelastic materials are presented. A free-free steel plate covered by a 20mm thick layer of foam and a massive heavy layer has been selected as a first test case.
X