Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

The Benefits of Diesel Exhaust Fluid (DEF) Additivation on Urea-Derived Deposits Formation in a Close-Coupled Diesel SCR on Filter Exhaust Line

2017-10-08
2017-01-2370
Diesel Exhaust Fluid (DEF) like Adblue® is a urea/water solution injected upstream from the SCR catalyst. Urea decomposes into ammonia (NH3) which acts as reducing agent in the de-NOx reaction process. However, incomplete decomposition of urea can lead to unwanted deposits formation, thereby resulting into backpressure increase, loss of NOx reduction efficiency, and durability issues. The phenomenon is aggravated at low temperatures and can lead to restriction or stop of DEF injection below certain exhaust temperatures. This paper focuses on the influence of the additivation of DEF on deposits formation in a passenger car close-coupled SCR on filter Diesel exhaust line installed in a laboratory flow bench test. The behavior of two different additivated DEF was compared to Adblue® in terms of deposits formation on the mixer and SCRF canning at different temperatures comprised between 240°C and 165°C, and different air flows.
Technical Paper

Persistent Particle Number Emissions Sources at the Tailpipe of Combustion Engines

2016-10-17
2016-01-2283
The more and more stringent regulations on particle emissions at the vehicle tailpipe have led the car manufacturers to adopt suitable emissions control systems, like particulate filters with average filtration efficiency that can exceed 99%, including particulate mass (PM) and number (PN). However, there are still some specific operating conditions that could exhibit noticeable particle number emissions. This paper aims to identify and characterize these persistent sources of PN emissions, based on tests carried out both at the engine test bench and at the chassis dynamometer, and both for Diesel and Gasoline direct injection engines and vehicles. For Diesel engines, highest particle numbers were observed downstream of the catalyzed DPF during some operation conditions like engine warm up or filter regeneration phases. PN could be 50 times higher during the warm up phase and can reach as much as 2000 to 3000 times more during the regeneration phase compared to normal operation.
Technical Paper

Simulation of Urea-SCR Process Applied to Lean-burn SI Engines

2009-11-02
2009-01-2776
Lean-burn combustion in SI engines can significantly reduce fuel consumption but NOx reduction becomes challenging because classic three-way catalyst (TWC) is no more efficient. Urea-SCR is then an interesting alternative solution because of its high NOx conversion efficiency without any additional fuel consumption. The coupling between two SI lean-burn engines (stratified and homogeneous combustion) and a urea-SCR catalyst was simulated on the NEDC cycle. Simulation results showed that the SCR efficiency would comply with the limits required by future Euro 5/6 regulations. Associated urea solution consumptions were estimated thanks to a simplified model. Finally, a comparison with a Diesel application was also made. It showed that the required amount of reducing agent remained significantly higher for SI lean-burn engines than for Diesel engine.
Technical Paper

SCR for Passenger Car: the Ammonia-Storage Issue on a Fe-ZSM5 Catalyst

2009-06-15
2009-01-1929
A comprehensive experimental approach has been developed for a Fe-ZSM5 micro-porous catalyst, through a collaborative project between IFP, PSA Peugeot-Citroën and the French Environment and Energy Management Agency (ADEME). Tests have first been conducted on a synthetic gas bench and yielded estimated values for the amount of NH3 stored on a catalyst sample. These data have further been compared to those obtained from an engine test bench, in running conditions representative of the entire operating range of the engine. 15 operating points have been chosen, considering the air mass flow and the exhaust temperature, and tested with different NH3/NOx ratios. Steady-state as well as transient conditions have been studied, showing the influence of three main parameters on the reductant storage characteristics: exhaust temperature, NO2/NOx ratio, and air mass flow.
Technical Paper

Sulfated and Desulfated Lean NOx-trap Characterization for Optimized Management Strategy in Gasoline Applications

2006-04-03
2006-01-1068
Within the framework of the French research program PREDIT, a study was undertaken by ADEME, IFP, LGRE, PSA Peugeot Citroën and Umicore, whose main objective was a better understanding of the NOx storage and reduction phenomena on an aged, sulfated and desulfated NOx-trap. The target of this work was to use the information on catalyst working conditions to optimize catalyst management for a gasoline direct injection engine. The catalysts were characterized on both engine and synthetic gas benches. Aging and poisoning phenomena were studied and a variety of different chemical analytical tools were used. The behavior of two different thermally aged cores was investigated under rich conditions on a synthetic gas test bench. The dependence of the NOx regeneration efficiency of the traps is reported for several operating parameters, including reductant concentrations, durations of the rich pulse and trap loadings.
X