Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Numerical Investigation of Turbulence Anisotropy of In-Cylinder Flows with Multi-Cycle Large Eddy Simulation

2021-04-06
2021-01-0416
In-cylinder flows in internal combustion engines are highly turbulent in nature. An important property of turbulence that plays a key role in mixture formation is anisotropy; it also influences ignition, combustion and emission formation. Thus, understanding the turbulence anisotropy of in-cylinder flows is critical. Since the most widely used two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models assume isotropic turbulence, they are not suitable for correctly capturing the anisotropic behavior of turbulence. However, large eddy simulation (LES) can account for the anisotropic behavior of turbulence. In this paper, the Reynolds stress tensor (RST) is analyzed to assess the predictive capability of RANS and LES with regard to turbulence anisotropy. The influence of mesh size on turbulence anisotropy is also looked into for multi-cycle LES.
Technical Paper

Application of the HiL Method to Develop Transient Operating Strategies for Highly Flexible Power Generation in Gas Engine Power Plants

2021-04-06
2021-01-0421
The transient operation of gas engines is of paramount importance to sustainable power generation as it increases the share of renewable energy. Fast-reacting and highly flexible power plants are an integral component of scenarios for the smart power generation of the future. Modern gaseous fueled large bore engines already adapt to fluctuating load demands quickly and also provide high efficiency throughout all load conditions. However, future energy systems that integrate predominantly fluctuating renewables will require even further improved transient capabilities of these engines. The goal is to be competitive with diesel engines in applications with the highest transient requirements and to meet the high transient requirements while simultaneously generating significantly less emissions than other fossil generation facilities to support the future sustainable power supply.
Technical Paper

Visualization of Turbulence Anisotropy in the In-cylinder Flow of Internal Combustion Engines

2020-04-14
2020-01-1105
Turbulence anisotropy has a great influence on mixture formation and flame propagation in internal combustion engines. However, the visualization of turbulence in simulations is not straightforward; traditional methods lack the ability to display the anisotropic properties in the engine geometry. Instead, they use invariant maps, and important information about the locality of the turbulence anisotropy is lost. This paper overcomes this shortcoming by visualizing the anisotropy directly in the physical domain. Componentality contours are applied to directly visualize the anisotropic properties of turbulence in the three-dimensional engine geometry. Using an RGB (red, green, blue) color map, the three limiting states of turbulence (one-component, axisymmetric two-component and isotropic turbulence) are displayed in the three-dimensional physical domain.
Technical Paper

Engine Operating Parameter-based Heat Transfer Simulation to Predict Engine Warm-up

2014-04-01
2014-01-1103
Optimization of engine warm-up behavior has traditionally made use of experimental investigations. However, thermal engine models are a more cost-effective alternative and allow evaluation of the fuel saving potential of thermal management measures in different driving cycles. To simulate the thermal behavior of engines in general and engine warm-up in particular, knowledge of heat distribution throughout all engine components is essential. To this end, gas-side heat transfer inside the combustion chamber and in the exhaust port must be modeled as accurately as possible. Up to now, map-based models have been used to simulate heat transfer and fuel consumption; these two values are calculated as a function of engine speed and load. To extend the scope of these models, it is increasingly desirable to calculate gas-side heat transfer and fuel consumption as a function of engine operating parameters in order to evaluate different ECU databases.
Journal Article

Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines

2009-04-20
2009-01-1423
A realistic modeling of the wall heat transfer is essential for an accurate analysis and simulation of the working cycle of internal combustion engines. Empirical heat transfer formulations still dominate the application in engine process simulations because of their simplicity. However, experiments have shown that existing correlations do not provide satisfactory results for all the possible operation modes of hydrogen internal combustion engines. This paper describes the application of a flow field-based heat transfer model according to Schubert et al. [1]. The models strength is a more realistic description of the required characteristic velocity; considering the influence of the injection on the global turbulence and on the in-cylinder flow field results in a better prediction of the wall heat transfer during the compression stroke and for operations with multiple injections. Further an empirical hypothesis on the turbulence generation during combustion is presented.
Journal Article

Automated Parameter Determination for IC Engine Simulation Models

2009-04-20
2009-01-0674
When developing and later using simulation models for combustion prediction in internal combustion engines, it is first of all necessary to determine the model constants. This paper describes the development of a method for the automated determination of model parameters which can be applied to any internal combustion simulation model. The work is not aimed at developing a new optimizing algorithm but at adjusting and adapting an existing optimizer to the special needs and convergence problems, which occur when applied to combustion models. Consequently, the paper describes the set-up of the objective function and several methods for improving the convergence. Finally, an outline for a strategy which uses the optimizing tool for model development is presented.
Technical Paper

ROHR Simulation for DI Diesel Engines Based on Sequential Combustion Mechanisms

2006-04-03
2006-01-0654
In this paper a zero-dimensional simulation methodology for efficient pre-optimization of the combustion process in DI diesel engines is presented. A new model for the calculation of the rate of heat release is unveiled. It is based on the separate description of both the primary processes closely related to the fuel jet as well as the following combustion of the fuel mass remaining after the end of injection. The modeling of fuel mass distribution between premixed and diffusion combustion as well as a model for the fuel preparation time are explained. Furthermore, models for the calculation of ignition delay and premixed combustion based on an extended Arrhenius formulation are discussed, as well as turbulent combustion on the basis of a Magnussen model. The new features of the heat release model prove to be necessary to describe the effects of modern high-pressure fuel injection systems on the combustion process regarding the strong influence of the injection rate on the burn rate.
X