Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

The Effect of Using the Same Tire Friction for Both Vehicles in Impact Speed Reconstructions

2021-04-06
2021-01-0899
Most collision reconstructions implicitly assume the same tire/road friction coefficient for all vehicles, despite evidence that friction varies between tires, surfaces, and individual trials. Here we assess the errors introduced by an assumption of a single, universal friction coefficient when reconstructing a collision where vehicles actually had different tire frictions. We used Monte Carlo methods to generate 20,000 synthetic two-vehicle impacts and rest positions using different, randomized friction coefficients for each vehicle and randomized impact speeds. These rest positions were then used to reconstruct both vehicles’ impact speeds assuming a single, common friction coefficient. High and low bounds on the impact speeds were reconstructed using high and low bounds on the common friction. We found that more than 97% of the true impact speeds were in the ranges reconstructed using upper and lower friction bounds.
Technical Paper

Accuracy and Sensitivity of Yaw Speed Analysis to Available Data

2019-04-02
2019-01-0417
Accident reconstructionists rarely have complete data with which to determine vehicle speed, and so the true value must be bracketed within a range. Previous work has shown the effect of friction uncertainty in determining speed from tire marks left by a vehicle in yaw. The goal of the current study was to assess improvements in the accuracy of vehicle speed estimated from yaw marks using progressively more scene and vehicle information. Data for this analysis came from staged S-turn maneuvers that in some cases led to rollover of sport utility vehicles. Initial speeds were first calculated using the critical curve speed (CCS) formula on the yaw marks from the first portion of the S-maneuver. Then computer simulations were performed with progressively more input data: i) the complete tire marks from the whole S-maneuver, ii) measured vehicle mass, iii) measured suspension stiffness and damping, and iv) measured steering history.
Technical Paper

Measuring and Modeling Suspensions of Passenger Vehicles

2013-04-08
2013-01-0774
Numerical parameters describing suspension stiffness and damping are required for 3D simulation of vehicle trajectories, but may not be available. This paper outlines a simple, portable method of measuring these properties with a coefficient of variation of 5% on stiffness. 24 of 26 vehicles tested were significantly stiffer in roll than pitch, complicating analyses with models that don't include anti-roll. Suspension parameters did not correlate with static wheel load distribution, and damping coefficient did not correlate with natural frequency. Computer simulations of the speed required to initiate rollover in an S-curve were highly sensitive to the suspension parameters used. When pre-impact tire marks and rollover distance were considered, the simulations became almost insensitive to suspension parameters.
Technical Paper

The Accuracy and Sensitivity of 2003 and 2004 General Motors Event Data Recorders in Low-Speed Barrier and Vehicle Collisions

2005-04-11
2005-01-1190
Crash data stored in the airbag sensing and diagnostic modules (SDMs) of General Motors vehicles can provide useful information for accident investigators. To quantify the accuracy and sensitivity of select 2003 to 2004 SDMs, two types of tests were performed. First, three 2004 vehicles underwent 136 vehicle-to-barrier and vehicle-to-vehicle collisions with speed changes up to 8 km/h. Second, 2003 and 2004 model year SDMs underwent a range of crash pulses using a linear sled. In all of the tests the speed change reported by the SDM underestimated the actual speed change. The speed change underestimates ranged from 0.2 to 2.9 km/h except for several anomalous tests in which the underestimate was as high as 12.3 km/h. The magnitude of this error varied with crash pulse shape. Increasing crash pulse duration and decreasing peak acceleration increased the difference between the actual and SDM reported speed change. The threshold accelerations for the SDMs tested ranged from 1.1 to 2.7g.
Technical Paper

The Accuracy of Crash Data Saved by Ford Restraint Control Modules in Lowcspeed Collisions

2004-03-08
2004-01-1214
Crash data recorded by the restraint control module (RCM) installed in newer Ford passenger vehicles have recently become available to investigators. To quantify the accuracy of the crash data in low-speed collisions, two RCM-equipped vehicles were exposed to 84 aligned frontal barrier collisions with speed changes up to 13.5 km/h. The accuracy of the speed change reported by the RCM ranged from an underestimate of 1.8 km/h to an overestimate of 0.3 km/h. The error varied with speed change. The RCMs were mounted on a linear sled to investigate their sensitivity to specific collision pulse parameters. For both RCMs, the first eight acceleration data points were duplicated at the end of the data and the record of the crash pulse was often incomplete. Based on the results of this study, crash investigators need to carefully interpret the RCM-reported acceleration and speed change data before using it to reconstruct low-speed collisions involving Ford vehicles.
Technical Paper

The Accuracy of Pre-Crash Speed Captured by Event Data Recorders

2003-03-03
2003-01-0889
Most 1999 and newer General Motors (GM) vehicles have an event data recorder (EDR) that can record pre-crash speed incorporated into the airbag sensing and diagnostic module (SDM). The accuracy of the SDM-reported pre-crash speed over a wide range of speeds has not been previously tested and reported. In this study, the SDMs of three late-model GM passenger cars were artificially triggered while driving at a constant speed between 1 and 150 km/h. The SDM-reported pre-crash speeds were compared to speeds measured by a calibrated 5th-wheel of known accuracy. The results showed that the accuracy of the SDM-reported pre-crash speed varied with both speed and vehicle. The overall uncertainty associated with all three SDMs tested varied from a 1.5 km/h overestimation of vehicle speed at low speeds to a 3.7 km/h underestimation of vehicle speed at high speeds.
Technical Paper

The Accuracy and Sensitivity of Event Data Recorders in Low-Speed Collisions

2002-03-04
2002-01-0679
Collision data stored in the airbag sensing and diagnostic module (SDM) of 1996 and newer GM vehicles have become available to accident investigators through the Vetronix Crash Data Retrieval system. In this study, two experiments were performed to investigate the accuracy and sensitivity of the speed change reported by the SDM in low-speed crashes. First, two SDM-equipped vehicles were subjected to 260 staged frontal collisions with speed changes below 11 km/h. Second, the SDMs were removed from the vehicles and exposed to a wide variety of collision pulses on a linear motion sled. In all of the vehicle tests, the speed change reported by the SDM underestimated the actual speed change of the vehicle. Sled testing revealed that the shape, duration and peak acceleration of the collision pulse affected the accuracy of the SDM-reported speed change. Data from the sled tests were then used to evaluate how the SDM-reported speed change was calculated.
Technical Paper

Low-Speed Impact Testing of Pickup Truck Bumpers

2001-03-05
2001-01-0893
The purpose of this paper was to compare the damage to pickup truck bumpers produced by vehicle-to-barrier and vehicle-to-vehicle collisions of a similar severity, in order to determine whether vehicle-to-barrier tests can serve as surrogates for vehicle-to-vehicle tests in accident reconstruction. Impact tests were conducted on the front and rear bumpers of five pickup trucks. Each truck was subjected to an impact with a fixed barrier and with a passenger vehicle. All impacts resulted in pickup truck speed changes of about 8 km/h. Damage produced in the barrier and vehicle-to-vehicle collisions was similar if both collisions resulted in bumper mount damage on the pickup truck. If there was no bumper mount damage, then the bumper beam deformation depended on the shape of the impactor.
X