Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Overview of Cloud Microphysical Measurements during the SENS4ICE Airborne Test Campaigns: Contrasting Icing Frequencies from Climatological Data to First Results from Airborne Observations

2023-06-15
2023-01-1491
The European Union’s Horizon 2020 programme has funded the SENS4ICE (Sensors for Certifiable Hybrid Architectures for Safer Aviation in Icing Environment) project [1], an innovative approach for the development and testing of new sensors for the detection of supercooled large droplets (SLD). SLD may impinge behind the protected surfaces of aircraft and therefore represents a threat to aviation safety. The newly developed sensors will be tested in combination with an indirect detection method on two aircraft, in two parallel flight programs: One on the Embraer Phenom 300 in the U.S. and one on the ATR-42 in Europe. In this framework the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center) is in charge of the airborne measurements and data evaluation of the microphysical properties of clouds encountered during the SENS4ICE field campaigns in February, March and April 2023.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

HAIC/HIWC Field Campaign - Specific Findings on PSD Microphysics in High IWC Regions from In Situ Measurements: Median Mass Diameters, Particle Size Distribution Characteristics and Ice Crystal Shapes

2015-06-15
2015-01-2087
Despite past research programs focusing on tropical convection, the explicit studies of high ice water content (IWC) regions in Mesoscale Convective Systems (MCS) are rare, although high IWC conditions are potentially encountered by commercial aircraft during multiple in-service engine powerloss and airdata probe events. To gather quantitative data in high IWC regions, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including a first field campaign conducted out of Darwin (Australia) in 2014. The airborne instrumentation included a new reference bulk water content measurement probe and optical array probes (OAP) recording 2D images of encountered ice crystals. The study herein focuses on ice crystal size properties in high IWC regions, analyzing in detail the 2D image data from the particle measuring probes.
X