Refine Your Search

Topic

Search Results

Viewing 1 to 4 of 4
Technical Paper

Exploring methanol and naphtha as alternative fuels for a hybrid-ICE battery-driven light-duty vehicle

2024-06-12
2024-37-0021
In pursuing sustainable automotive technologies, exploring alternative fuels for hybrid vehicles is crucial in reducing environmental impact and aligning with global carbon emission reduction goals. This work compares methanol and naphtha as potential suitable alternative fuels for running in a battery-driven light-duty hybrid vehicle by comparing their performance with the diesel baseline engine. This work employs a 0-D vehicle simulation model within the GT-Power suite to replicate vehicle dynamics under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The vehicle choice enables the assessment of a delivery application scenario using distinct payload capacities: 0%, 25%, 50%, and 100%. The model is fed with engine maps derived from previous experimental work conducted in the same engine, in which a full calibration was obtained that ensures the engine's operability in a wide region of rotational speed and loads.
Technical Paper

Electric Vehicles vs e-Fuelled ICE Vehicles: Comparison of potentials for Life Cycle CO2 Emission Reduction

2022-03-29
2022-01-0745
The need to control global warming by regulating automotive emission levels has led to a lot of changes in the policies of different countries globally, specifically the United States (US) and the European Union (EU). More recently, the governments have been strongly pushing the integration of Electric Vehicles (EVs) in the market to replace the conventional Internal Combustion Engine (ICE) vehicles for CO₂ emissions reduction, with the enforcement of 50% EV sales by 2030 in the US and complete 100% by 2035 in the EU for passenger cars. However, these policies are misleading by considering EVs as zero emission vehicles, as there is no such technology yet available that has zero emissions during its lifecycle. During the manufacturing phase, any vehicle produced gives out emissions, with EVs emitting even higher than the conventional ICE vehicles with their battery manufacturing.
Journal Article

CO2 Well-to-Wheel Abatement with Plug-In Hybrid Electric Vehicles Running under Low Temperature Combustion Mode with Green Fuels

2020-06-30
2020-37-0026
Plug-in Hybrid Electric Vehicles (PHEVs) can be considered as the most promising technology to achieve the European CO2 targets together with a moderate infrastructure modification. However, the real benefits, in terms of CO2 emissions, depend on a great extent on the energy source (fuel and electricity mix), user responsibility, and vehicle design. Moreover, the electrification of the powertrain does not reduce other emissions as NOx and particulate matter (mainly soot). In the last years, low temperature combustion (LTC) modes as the reactivity controlled compression ignition (RCCI) have shown to achieve ultra-low NOx and soot emissions simultaneously due to the use of two fuels with different reactivity together with high exhaust gas recirculation (EGR) rates. Therefore, the aim of this work is to assess, through numerical simulations fed with experimental results, the effects of different energy sources on the performance and emissions of a series RCCI PHEV.
Technical Paper

Dual-Fuel Ethanol-Diesel Technology Applied in Mild and Full Hybrid Powertrains

2019-09-09
2019-24-0115
The increasingly stringent emissions regulations together with the demand of highly efficient vehicles from the customers, lead to rapid developments of distinct powertrain solutions, especially when the electrification is present in a certain degree. The combination of electric machines with conventional powertrains diversifies the powertrain architectures and brings the opportunity to save energy in greater extents. On the other hand, alternative combustion modes as reactivity controlled compression ignition (RCCI) have shown to provide simultaneous ultra-low NOx and soot emissions with similar or better thermal efficiency than conventional diesel combustion (CDC). In addition, it is necessary to introduce more renewable fuels as ethanol to reduce the total CO2 emitted to the atmosphere, also called well-to-wheel (WTW) emission, in the transport sector.
X