Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Investigation into Friction Induced Noise of Automotive Wiper System

2010-04-12
2010-01-0749
The test is carried out to examine the vehicle interior noise, windscreen vibration and wiper blade vibration induced by wiper friction, under the combination conditions with various wiping speed and windscreen wetness. The noise's time-frequency characteristics, influence factors and noise source were approached by means of time domain, frequency domain and time-frequency domain analysis. The results indicated that wiper noise can be classified into reversal noise and wiping noise. The reversal noise is characterized by impulsive noise, and wiping noise is featured by wide-band noise with harmonic components. The nature of both types of noises is strongly affected by the windshield wetness; however, it is far less affected by the wiping speed. The wiping noise is mainly resulted from lateral and vertical vibration of wiper blades.
Technical Paper

Applicability of Different Loudness Models to Time-Varying Sound in Vehicle

2010-04-12
2010-01-0753
Three sound loudness calculation models, including Zwicker instantaneous loudness model, Moore instantaneous loudness model and Moore time-varying loudness model, and the cited Zwicker time-varying loudness model in ArtemiS, were applied to calculate the time-varying loudness of three typical vehicle sounds, in particular. They are steady engine idle noise, impulsive door closing noise and order-swept electric vehicle pass-by noise. Based on the loudness amplitude and time-frequency loudness results, the applicability of the four loudness models to time-varying sounds was analyzed and compared. It was found that, both Zwicker and Moore time-varying loudness models are more reliable than Zwicker and Moore instantaneous loudness models if the sound amplitude and frequency vary tempestuously. And the time-frequency result of Moore instantaneous loudness model can be very helpful to noise source identification and mechanism analysis.
X