Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Advances in Combustion Systems for Gas Engines

2013-11-27
2013-01-2751
The paper presents a novel concept of a very efficient transportation engines for operation with CNG, LNG or LPG. The paper considers the options of single fuel design with jet ignition and dual fuel design with Diesel and gas. In the first option gas fuel is injected into the main chamber by a direct injector and ignited by jet ignition. In the second option gas fuel is injected into the main chamber by a direct injector and ignited by the direct injection of a small quantity of Diesel fuel. Injection and ignition may be tuned to control the amount of premixed and diffusion combustion to produce the best fuel conversion efficiency vs. load and speed requirements within the prescribed pressure and temperature constraints.
Technical Paper

Experimental and Numerical Study of an Air Assisted Fuel Injector for a D.I.S.I. Engine

2007-04-16
2007-01-1415
The transient behaviour of the fuel spray from an air assisted fuel injector has been investigated both numerically and experimentally in a Constant Volume Chamber (CVC) and an optical engine. This two phase injector is difficult to analyse numerically and experimentally because of the strong coupling between the gas and liquid phases. The gas driven atomization of liquid fuel involves liquid film formation, separation and break up and also liquid droplet coalescence, break up, splashing, bouncing, evaporation and collision. Furthermore, the liquid phase is the dominant phase in many regions within the injector. Experimental results are obtained by using Mie scattering, Laser Induced Fluorescence (LIF) and Laser Sheet Drop sizing (LSD) techniques. Computational results are obtained by using a mixed Lagrangian/Eulerian approach in a commercial Computational Fluid Dynamic (CFD) code.
X