Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Characterization of Low Load Ethanol Dual-Fuel Combustion using Single and Split Diesel Injections on a Heavy-Duty Engine

2016-04-05
2016-01-0778
The use of two different fuels to control the in-cylinder charge reactivity of compression ignition engines has been shown as an effective way to achieve low levels of nitrogen oxides (NOx) and soot emissions. The port fuel injection of ethanol on a common rail, direct injected diesel engine increases this reactivity gradient. The objective of this study is to experimentally characterize the controllability, performance, and emissions of ethanol-diesel dual-fuel combustion in a single cylinder heavy-duty engine. Three different diesel injection strategies were investigated: a late split, an early split, and an early single injection. The experiments were performed at low load, where the fuel conversion efficiency is typically reduced due to incomplete combustion. Ethanol substitution ratios varied from 44-80% on an energy input basis.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
X