Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Technical Paper

Gasoline - Ignition Improver - Oxygenate Blends as Fuels for Advanced Compression Ignition Combustion

2013-04-08
2013-01-0529
Mixing is inhibited both by the relatively low volatility of conventional diesel fuel and the short premixing time due to high fuel reactivity (i.e. cetane number (CN)). Consequently, in this research two promising oxygenates which can be produced from 2nd generation biomass -ethanol from cellulose and anisole from lignin - will be blended to gasoline, further doped with ignition improver. This will result in a diesel-like CN, but with a higher gasoline-like volatility. There is, however, also a more practical motivation for this study. In Europe, the dieselization trend is resulted in a growing excess of gasoline, which is currently largely exported to the USA at additional transport costs. Boosting the cetane number of gasoline into the diesel range with ignition improvers is a promising route to more efficiently consume European refinery products within Europe.
Journal Article

The Effect of the Position of Oxygen Group to the Aromatic Ring to Emission Performance in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1697
In this paper, the soot-NOx trade-off and fuel efficiency of various aromatic oxygenates is investigated in a modern DAF heavy-duty diesel engine. All oxygenates were blended to diesel fuel such that the blend oxygen concentration was 2.59 wt.-%. The oxygenates in question, anisole, benzyl alcohol and 2-phenyl ethanol, have similar heating values and cetane numbers, but differ in the position of the functional oxygen group relative to the aromatic ring. The motivation for this study is that in lignin, a widely available and low-cost biomass feedstock, similar aromatic structures are found with varying position of the oxygen group to the aromatic ring. From the results it becomes clear that both the soot-NOx trade-off and the volumetric fuel economy (i.e. ml/kWh) is improved for all oxygenates in all investigated work points.
Technical Paper

Emission Performance of Lignin-Derived Cyclic Oxygenates in a Heavy-Duty Diesel Engine

2012-04-16
2012-01-1056
In earlier research, a new class of bio-fuels, so-called cyclic oxygenates, was reported to have a favorable impact on the soot-NOx trade-off experience in diesel engines. In this paper, the soot-NOx trade-off is compared for two types of cyclic oxygenates. 2-phenyl ethanol has an aromatic and cyclohexane ethanol a saturated or aliphatic ring structure. Accordingly, the research is focused on the effect of aromaticity on the aforementioned emissions trade-off. This research is relevant because, starting from lignin, a biomass component with a complex poly-aromatic structure, the production of 2-phenyl ethanol requires less hydrogen and can therefore be produced at lower cost than is the case for cyclohexane ethanol.
Journal Article

Direct Injection of Diesel-Butane Blends in a Heavy Duty Engine

2011-12-06
2011-01-2400
Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles. These (port fuel) systems either vaporize the liquid fuel and then mix it with intake air, or inject fuel into the engine's intake ports. While this concept offers significant fuel cost reductions, for aftermarket certification and large-scale OEM use some concerns are present. Unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions are known to be high because of premixed charge getting trapped into crevices and possibly being blown through during valve-overlap. Apart from the higher emission levels, this also limits fuel efficiency and therefore cost savings.
X