Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Methodology for Automotive Steel Wheel Life Assessment

2020-04-14
2020-01-1240
A methodology for an efficient failure prediction of automotive steel wheels during fatigue experimental tests is proposed. The strategy joins the CDTire simulative package effectiveness to a specific wheel finite element model in order to deeply monitor the stress distribution among the component to predict damage. The numerical model acts as a Software-in-the-loop and it is calibrated with experimental data. The developed tool, called VirtualWheel, can be applied for the optimisation of design reducing prototyping and experimental test costs in the development phase. In the first section, the failure criterion is selected. In the second one, the conversion of hardware test-rig into virtual model is described in detail by focusing on critical aspects of finite element modelling. In conclusion, failure prediction is compared with experimental test results.
Technical Paper

Simulation of Dynamic Gas Cavity Effects of a Tire under Operational Conditions

2018-04-03
2018-01-0682
The authors are responsible for the development of a structural 3D shell based bead-to-bead model with sidewalls and belt that separately models all functional layers of a modern tire [4]. In this model, the inflation pressure is modeled as a uniform stress acting normal to the shell’s inner face. The pressure can vary depending on the application: prescribed by the MBS-tool to align to a constant pressure specified for a vehicle or scenario, but it can also be modified dynamically to simulate e.g. a sudden pressure loss in a tire [1]. For many applications, this description of the inflation pressure as a time dependent quantity is sufficient. However, there are applications where it is needed to describe the inflation gas using a dynamic gas equation (Euler or Navier-Stokes). One such example is when the tire model is used in NVH (Noise-Vibration-Harshness) applications where the frequency range extends the 200 Hz range.
Technical Paper

Structural MBD Tire Models: Closing the Gap to Structural Analysis - History and Future of Parameter Identification

2013-04-08
2013-01-0630
Today's tire models used in MBD full vehicle application scenarios like Ride&Comfort or Durability are parameterized with a variety of ‘spindle load’ measurements: quasi-static (e.g. vertical, lateral and circumferential stiffness), quasi-steady-state (e.g. pure lateral and longitudinal slip) and transient (e.g. cleat run) tests in well defined tire stand-alone test rigs measure the accumulated tire force acting on the wheel center. While some tests are designed to induce local deformations (e.g. vertical stiffness on cleats), no measurement of local reactions (e.g. sidewall displacement or rim strain) are performed in a standardized way - apart from footprint and contour tests. The level of detail in structural FEA tire models renders them unfeasible for most full vehicle applications due to the implied computational effort; however, dedicated tire stand-alone scenarios are well within reach of today's R&D IT infrastructures.
Technical Paper

A Method to Combine a Tire Model with a Flexible Rim Model in a Hybrid MBS/FEM Simulation Setup

2011-04-12
2011-01-0186
During the last ten years, there is a significant tendency in automotive design to use lower aspect ratio tires and meanwhile also more and more run-flat tires. In appropriate publications, the influences of these tire types on the dynamic loads - transferred from the road passing wheel center into the car - have been investigated pretty well, including comparative wheel force transducer measurements as well as simulation results. It could be shown that the fatigue input into the vehicle tends to increase when using low aspect ratio tires and particularly when using run-flat tires. But which influences do we get for the loading and fatigue behavior of the respective rims? While the influences on the vehicle are relatively easy to detect by using wheel force transducers, the local forces acting on the rim flange (when for example passing a high obstacle) are much more difficult to detect (in measurement as well as in simulation).
X