Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Testing of a Modern Wankel Rotary Engine - Part IV: Overall Mechanical and Thermal Balance

2022-08-30
2022-01-1001
The present work extends the performance analysis of a rotary Wankel engine for range extender applications already introduced in the companion papers of this series. Specifically, in this work, an overall balance was carried out on mechanical and thermal parameters inferred from the indicated pressure cycles and those measured by the dynamometer and the data acquisition system during steady-state engine testing, highlighting the energy fluxes within the machine. The evaluation of the in-chamber heat transfer coefficient, by means of an adapted Woschni model, and the related heat rejected to the coolant represent the additional and necessary analysis to complete the experimental assessment already presented in the previous papers. The tested engine is the Advanced Innovative Engineering 225CS and the experimental testing was conducted using a combustion analyser specifically developed for rotary machines.
Technical Paper

Control-Oriented Modelling of a Wankel Rotary Engine: A Synthesis Approach of State Space and Neural Networks

2020-04-14
2020-01-0253
The use of Wankel rotary engines as a range extender has been recognised as an appealing method to enhance the performance of Hybrid Electric Vehicles (HEV). They are effective alternatives to conventional reciprocating piston engines due to their considerable merits such as lightness, compactness, and higher power-to-weight ratio. However, further improvements on Wankel engines in terms of fuel economy and emissions are still needed. The objective of this work is to investigate the engine modelling methodology that is particularly suitable for the theoretical studies on Wankel engine dynamics and new control development. In this paper, control-oriented models are developed for a 225CS Wankel rotary engine produced by Advanced Innovative Engineering (AIE) UK Ltd. Through a synthesis approach that involves State Space (SS) principles and the artificial Neural Networks (NN), the Wankel engine models are derived by leveraging both first-principle knowledge and engine test data.
Technical Paper

Testing of a Modern Wankel Rotary Engine - Part I: Experimental Plan, Development of the Software Tools and Measurement Systems

2019-01-15
2019-01-0075
Wankel rotary engines are becoming an increasingly popular area of research with regard to their use as a range extender in the next generation of Hybrid Electric Vehicle (HEV). Due to their simple design, lightness, compactness and very favourable power-to-weight ratio, they represent one of the best alternative solutions to classic reciprocating piston engines. On the other hand, current Wankel engines still need improvements in terms of specific fuel consumption and emissions. This paper describes an innovative approach for the assessment of the performance of a modern rotary engine. All the experimental activities will be carried out within the Innovate UK funded ADAPT Intelligent Powertrain project led by Westfield Sportscars Limited.
Technical Paper

Design and Development of a Test Rig for E-bike Performance Evaluation

2015-09-06
2015-24-2542
The paper describes the development of an innovative test rig for the evaluation of e-bikes in terms of energetic performances and control system. The test rig has been realized starting from a commercial cyclist training system and suitably modified. The test rig is able to reproduce an aforethought route or paths acquired during road tests. It is possible to measure the performance of the e-bike in terms of instantaneous power and speed, by the installed sensors and data acquisition system. The experimental test rig can simulate the resistant torque of a predetermined track and it aims to test and to optimize the control strategy available on the electronic control unit (ECU). An important feature of the system is represented by the possibility to adopt a hardware in the loop approach for the testing of the e-bike and of its control. Indeed, the whole control algorithm can be implemented on a suitable controller board able to execute real time processes.
X