Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Structural Flow Properties in IC Engine-Relevant Piston-Cylinder Configurations: An Eddy-Resolving Modelling Study

2022-03-29
2022-01-0399
The feasibility of a recently developed eddy-resolving model of turbulence, termed as Very LES (Large-Eddy-Simulation), was tested by simulating the flow dynamics in two moving piston-cylinder assemblies. The first configuration deals with the compression of a tumbling vortex generated during the intake process within a cylinder with the square cross-sectional area, for which the reference experimental database was made available by Borée et al. (2002). The second piston-cylinder assembly represents a realistic motored IC-Engine (Internal-Combustion Engine) with the multiple Y-shaped intake and outtake ducts in which the movable valves are accommodated. The boundary and operating conditions correspond to the experimental study performed by Baum et al. (2014). The VLES simulation model applied presently is a seamless eddy-resolving hybrid RANS/LES (Reynolds-Averaged Navier-Stokes / Large-eddy Simulation) model.
Journal Article

A Hybrid Wall Heat Transfer Model for IC Engine Simulations

2015-04-14
2015-01-0388
The present work improves performance of the wall heat transfer model of Han and Reitz employing advanced turbulence modeling and formulating a compressible wall function in the framework of hybrid wall treatment. Some ambiguities related to the originally published model of Han and Reitz are discussed in order to provide a basis for the present modeling approach. A hybrid heat transfer model formulation relies on the k-ζ-f turbulence model which is capable of capturing turbulent stress anisotropy near wall and predicting heat transfer with more fidelity. The model is validated against spark ignition (SI) engine heat transfer measurements. Predicted wall heat flux evolutions on the cylinder head exhibit very good agreement with the experimental data, being superior to similar numerical predictions available in the published literature.
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
X