Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Combustion Analysis in a Gasoline Baseline Hydrogen-Fueled Internal Combustion Engine at Ultra-Lean Conditions

2023-08-28
2023-24-0073
Hydrogen-fueled internal combustion engines (H2ICEs) have emerged as a promising technology for reducing greenhouse gas emissions in the transportation sector. However, due to the unique properties of hydrogen, especially under ultra-lean conditions, the combustion characteristics of hydrogen flames differ significantly from those of conventional fuels. This research focuses on evaluating the combustion process and cycle-to-cycle variations (CCVs) in a single-cylinder port-fuel injection H2ICE, as well as their impact on performance parameters. To assess in-cylinder combustion, three indicators of flame development are utilized and compared to the fundamental properties of hydrogen. The study investigates the effects of various factors including fuel-air equivalence ratio (ranging from 0.2 to 0.55), engine load (IMEP between 1 and 4 bar), and engine speed (900 to 1500 rpm).
Technical Paper

Thermodiffusive Effect on the Flame Development in Lean Burn Spark Ignition Engine

2014-10-13
2014-01-2630
In Spark Ignition engines, the heat release rate is not only piloted by the mixture reactivity but also by its sensitivity to stretch effects. Only few results can be found in the literature about flame stretch effect in SI engine configurations. For this study, three different fuels (Methane, Propane, Iso-octane) were studied, but at different air-fuel lean mixture conditions, to present almost equivalent laminar flame speeds and thermo-dynamical properties at ignition timing condition. Besides those mixtures present different Lewis numbers which are relevant parameters to describe flame-stretch interactions. Mie-scattering tomography was then performed in an optical Spark Ignition (S.I.) engine. Using a high speed camera, flame propagation images were acquired through the piston. Thermodynamic analyses based on in-cylinder pressure traces were performed to estimate in-cylinder temperature and burnt mass fraction during the engine cycle.
X