Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

Simulation Guided Design for Developing Direct Injection Combustion Systems of Gasoline Engines

2016-10-17
2016-01-2313
This paper describes a simulation guided design methodology for developing direct injection combustion systems of gasoline engines. The first step is the optimization of engine gas flow. The intake port is optimized by CFD simulations to compromise the engine breathing capacity and its tumble flow. Secondly, the piston crown shapes and the injection system designs (injection pressure, hole number, hole size and orientations) are optimized based on dedicated CFD simulation results. Thirdly, different injection strategies are used at different engine operating conditions to achieve best engine performance, such as split injections being used at cold starting and catalyst heating period to realize stratified charge combustion for fast catalyst light-off, and a single injection being used to achieve homogeneous mixture combustion at almost all other operating conditions.
Technical Paper

Experimental Study on Injector Spray Pattern Optimization for a Turbocharged GDI Engine Combustion System

2014-04-01
2014-01-1439
Changan Automobile Company recently develops a new 1.0L turbocharged GDI engine for its future vehicle as an affordable fuel-saving option. Fuel direct injection and turbo-charging are integrated to significantly improve fuel economy and power. Injection spray pattern plays an important role on GDI engine combustion system because of its critical influences on combustion and oil dilution. In this paper, four injector patterns were tested in an optical engine with Planar, double sided Laser Induced Fluorescence (LIF) with fuel & tracer and flame imaging methods to evaluate spray, mixture formation and combustion process in cylinder. Spray pattern and mixture formation are studied using LIF, while flame and combustion characteristics are studied by flame natural luminosity. The pictures of piston crown and glass liner are also evaluated for fuel spray impingement. Four types of multi-hole injectors are prepared.
X