Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Practical Recuperated Split Cycle Engine for Low Emissions and High Efficiency

2019-09-09
2019-24-0190
The Recuperated Split Cycle Engine is a new type of ICE, offering a step change in efficiency and tailpipe emissions. It targets the heavy duty, long-haul sector (trucks, off-highway, rail, shipping), where electrification is most challenging, and distributed generation, where capacity is required to support rising electrification. The engine separates cold (induction, compression) and hot (combustion, expansion) parts of the cycle; waste exhaust heat is recovered between them via a recuperator, as in a recuperated gas turbine. Recent research presented at this conference [1] shows that the sonic airflows seen in the induction event give rise to extraordinary fuel mixing and clean, cool combustion, with potential for after-treated emission levels between SULEV and zero-impact (either unmeasurable or below ambient).
Technical Paper

Implementation of a 0-D/1-D/3-D Process for the Heat Release Prediction of a Gasoline Engine in the Early Development Stage

2019-04-02
2019-01-0468
The automotive market’s need for ever cleaner and more efficient powertrains, delivered to market in the shortest possible time, has prompted a revolution in digital engineering. Virtual hardware screening and engine calibration, before hardware is available is a highly time and cost-effective way of reducing development and validation testing and shortening the time to bring product to market. Model-based development workflows, to be predictive, need to offer realistic combustion rate responses to different engine characteristics such as port and fuel injector geometry. The current approach relies on a combination of empirical, phenomenological and experienced derived tools with poor accuracy outside the range of experimental data used to validate the tool chain, therefore making the exploration of unconventional solutions challenging.
Technical Paper

A Late Injection Combustion Strategy Using a Novel Ramped Combustion System

2017-09-04
2017-24-0090
Traffic related NOx and particle emission remain a significant concern particularly in the urban environment. Electrification offers a medium to long term solution, but there remains a need to significantly reduce internal combustion engine emissions in the short and medium term, and potentially in the long term for long range inter city transportation. Late injection low temperature combustion (LTC) has the potential to achieve ultra-low emissions levels in a compression ignition engine by increasing the lean pre-mixed burn fraction. However, significant quantities of diluent are normally required to achieve the required delay in ignition and pre-mixing to achieve LTC. This results in high boost requirements, increased pumping work and the complexity of the air handling system and potentially adversely impacting fuel economy.
Technical Paper

The Benefits of High Injection Pressure on Future Heavy Duty Engine Performance

2015-09-06
2015-24-2441
Diesel fuel injection pressures have increased steadily on heavy duty engines over the last twenty years and pressures as high as 300MPa are now possible. This was driven by the need to control toxic exhaust emissions, in particular particulate emissions using advanced in-cylinder combustion strategies. With the introduction of efficient aftertreatment systems for both particulate and NOx emissions control there is less demand for in-cylinder emissions control especially considering the drive for improved fuel economy. In this paper we consider the benefit of high fuel injection pressure for a number of emissions control strategies with different balances of in-cylinder and exhaust aftertreatment emissions control. A test program was undertaken on a single cylinder heavy duty research engine installed at the University of Brighton, in collaboration with Ricardo.
Technical Paper

Effect of Hydrogen Fumigation in a Dual Fueled Heavy Duty Engine

2015-09-06
2015-24-2457
Concerns over the impact of road transport emissions on the climate have led to increased focus on how CO2 emissions could be reduced from the sector. This is of particular concern in the commercial vehicle sector, where engine downsizing and electrification have limited benefit due to the vehicle duty cycle. In this paper, we present results from an experimental program to investigate the impact of dual fueling a heavy duty engine on hydrogen and diesel. Hydrogen is potentially a zero carbon fuel, if manufactured from renewable energy but could also be manufactured on the vehicle through steam reformation of part of the liquid fuel. This opens a novel pathway for the recovery of waste heat from the exhaust system through the endothermic steam reformation process, improving the overall system efficiency. For these concepts to be viable, it is essential the dual fueled combustion system is both thermally efficient, and does not increase toxic emissions such as NOx.
Journal Article

An Assessment of the Bottoming Cycle Operating Conditions for a High EGR Rate Engine at Euro VI NOx Emissions

2013-09-08
2013-24-0089
This paper investigates the application of a Bottoming Cycle (BC) applied to a 10-litre (L) heavy duty Diesel engine for potential improvements in fuel efficiency. With the main thermodynamic irreversibility in the BC due to the temperature difference between the heat source and the working fluid, a proper selection of the working fluid and its operating condition for a given waste heat is the key in achieving high overall conversion efficiency. The paper reviews a fluid selection methodology based on thermodynamic/thermo-physical and environmental/safety properties. Results are presented using seven pure, dry, isentropic and wet working fluids (synthetic, organic and inorganic) operating with expansion starting from the saturated vapour, superheated vapour, supercritical phase, saturated liquid, and two-phase. Efficiency improvements by recovering Charge Air Coolers (CAC) and Exhaust Gas Recirculation (EGR) cooler heat on two engine platforms were calculated.
X