Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates

2019-04-02
2019-01-1156
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies and extremely low NOx and particulate emissions, but controlling the combustion timing remains a challenge. This paper explores the potential of Partial Fuel Stratification (PFS) to provide fast control of CA50 in an LTGC engine. Two different compression ratios are used (CR=16:1 and 14:1) that provide high efficiencies and are compatible with mixed-mode SI-LTGC engines. The fuel used is a research grade E10 gasoline (RON 92, MON 85) representative of a regular-grade market gasoline found in the United States. The fuel was supplied with a gasoline-type direct injector (GDI) mounted centrally in the cylinder. To create the PFS, the GDI injector was pulsed twice each engine cycle. First, an injection early in the intake stroke delivered the majority of the fuel (70 - 80%), establishing the minimum equivalence ratio in the charge.
Technical Paper

CFD Modeling of an Auxiliary Fueled Turbulent Jet Ignition System in a Rapid Compression Machine

2016-04-05
2016-01-0599
Three-dimensional numerical simulation of the turbulent jet ignition combustion process of a premixed methane-air mixture in a Rapid Compression Machine (RCM) was performed using the Converge computational software. Turbulent jet ignition is a prechamber initiated combustion system that can replace the spark plug in a spark ignition engine. The prechamber is a small volume chamber where an injector and spark plug are located and is connected to the main combustion chamber via one or multiple small orifices. Turbulent jet ignition is capable of enabling low temperature combustion, through either lean or dilute combustion. A RANS model, which included a k-ε turbulence model to solve the mean flow and the SAGE chemistry solver with a reduced methane mechanism to solve the chemistry, was used to model the turbulent jet ignition system.
Journal Article

Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine

2015-04-14
2015-01-0779
Turbulent jet ignition is a pre-chamber ignition enhancement method that produces a distributed ignition source through the use of a chemically active turbulent jet which can replace the spark plug in a conventional spark ignition engine. In this paper combustion visualization and characterization was performed for the combustion of a premixed propane/air mixture initiated by a pre-chamber turbulent jet ignition system with no auxiliary fuel injection, in a rapid compression machine. Three different single orifice nozzles with orifice diameters of 1.5 mm, 2 mm, and 3 mm were tested for the turbulent jet igniter pre-chamber over a range of air to fuel ratios. The performance of the turbulent jet ignition system based on nozzle orifice diameter was characterized by considering both the 0-10 % and the 10-90 % burn durations of the pressure rise due to combustion.
Technical Paper

Computational Study of a Turbulent Jet Ignition System for Lean Burn Operation in a Rapid Compression Machine

2015-04-14
2015-01-0396
Fully three-dimensional computational fluid dynamic simulations with detailed chemistry of a single-orifice turbulent jet ignition device installed in a rapid compression machine are presented. The simulations were performed using the computational fluid dynamics software CONVERGE and its RANS turbulence models. Simulations of propane fueled combustion are compared to data collected in the optically accessible rapid compression machine that the model's geometry is based on to establish the validity and limitations of the simulations and to compare the behavior of the different air-fuel ratios that are used in the simulations.
X