Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Approach for Mutual Inductance Identification of Wireless Power Transfer System in Electric Vehicle Charging Applications

2019-04-02
2019-01-0866
As a key parameter of fundamental electrical, mutual inductance always used to characterize the overall performance of wireless power transfer (WPT) system in electric vehicle charging applications. However, in real case, factors such as parking misalignments, load variations and intrusion of foreign objects would result in a variation of mutual inductance between both coils, which may adversely impact on transmitted power and transmission efficiency. Therefore, in this paper, we propose to identify mutual inductance parameter with the least square method (LSM) based on the equivalent circuit model. In section II, COMSOL is adopted to simulate mutual inductance variation with the change of lateral offset. In section III, the differential equation is derived from the state space equation of the WPT system. Through identifying the process parameters, the mutual inductance of coils can be obtained by the functional relationship between them.
Journal Article

A Novel ZSB-PAM Power Regulation Method Applied in Wireless Charging System for Vehicular Power Batteries

2015-04-14
2015-01-1194
Wireless charging system for vehicular power batteries is becoming more and more popular. As one of important issues, charging power regulation is indispensable for online control, especially when the distance or angle between chassis and ground changes. This paper proposes a novel power regulation method named Z-Source-Based Pulse-Amplitude-Modulation (ZSB-PAM), which has not been mentioned in the literatures yet. The ZSB-PAM employs a unique impedance network (two pairs of inductors and capacitors connected in X shape) to couple the cascaded H Bridge to the power source. By controlling the shoot-through state of H bridge, the input voltage to H bridge can be boosted, thus the transmitter current can be adjusted, and hence, charging current and power for batteries. A LCL-LCL resonant topology is adopted as the main transfer energy carrier, for it can work with a unity power factor and have the current source characteristic which is suitable for battery charging.
Technical Paper

Research on Charging Strategy of Lithium-ion Battery

2015-04-14
2015-01-1192
Lithium-ion battery charging strategy affects charging time of electric vehicles, energy efficiency of entire vehicle, service life and safety. This paper focuses on the lithium iron phosphate (LiFePO4) battery, based on the battery internal mechanism and the working conditions, taking charging time, effective full-charge capacity and charge energy efficiency as the evaluation indexes. Firstly, through a series of comparative experiments of the constant-current constant-voltage and the constant current charging strategy, the evaluation indexes variations in different temperatures and charging currents have been studied in the paper. By analyzing the respective characteristics of constant current charging phase and constant voltage charging phase in the whole charging process and their own contributions, we have found out the superiority of the constant current charging strategy.
X