Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Tail Pipe Emission Study of an Aged Exhaust after Treatment System for 3.8 Litre Diesel Engine

2021-09-22
2021-26-0215
With implementation of stringent BSVI emission norms and regulations like OBD-II on vehicle, it is essential to define the life of exhaust after treatment along with the vehicle. Diesel after treatment generally consists of DOC, DPF and SCR. Lubricating oil contains phosphorus and zinc which adversely affect the DOC. Unburned hydrocarbons (UNHBC) and SOF in tail pipe get accumulated in the DPF. This requires regeneration process where in, high temperatures in exhaust after treatment (EATS) burn the adsorbed Sulphur or phosphorus, thereby improving the conversion efficiencies. Repeated regenerations lead to ash accumulation in DPF and this reduces its capability for soot accumulation. Sulphur in the exhaust impacts SCR through NOx conversion. The present study analyzes the effect of (1) Chemical aging (2) Thermal aging on 3.77 liter diesel engine after treatment. A test cycle was prepared to run the durability for EATS.
Technical Paper

Behaviour Study of Particulate Matter and Chemical Composition with Different Combustion Strategies

2013-11-27
2013-01-2741
Diesel exhaust is a complex mixture of combustion products of diesel fuel, and the exact composition of the mixture depends on the nature of the engine, operating conditions, lubricating oil, additives, emission control system, combustion parameters and fuel composition. In a diesel engine, NOx (NO & NO2) and PM (Particulate Matter) are the most critical constituents for the emission legislation. In order to control the PM emission of diesel engine and comply with increasingly stringent exhaust legislation, more information is required on the components and genesis of PM. In general, PM from diesel engines is classified into two fractions: Insoluble Organic Fraction (ISOF) and Soluble Organic Fraction (SOF). In this experimental study, a series of 13 mode ESC cycle were run on a light duty diesel engine after optimization of combustion parameters (Injection Pressure, Injection Timing, Multiple Injections, EGR rate, etc) in successive tests and PM component was analyzed.
X