Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental and Numerical Electro-Thermal Characterization of Lithium-Ion Cells for Vehicle Battery Pack Applications

2023-08-28
2023-24-0159
Batteries are the key elements for the massive electrification of the transport sector. With the rapidly growing popularity of electric vehicles, it is becoming increasingly important to characterize the behavior of battery packs through fast and accurate numerical models, in order to support experimental activities. A coupled electro-thermal simulation framework is required, as it is the only way to realistically represent the interactions between real world battery pack performances and the vehicle-level thermal management strategies. The purpose of this work is to pave the way for a comprehensive methodology for the development of a supporting modeling framework, to efficiently complement experiments in the optimal design and integration of battery packs.
Technical Paper

Evaluation of Battery Power Losses During the LCA Use Phase of Electric Vehicles: An Experimental Analysis of Different Li-Ion Battery Chemistries

2023-08-28
2023-24-0155
Vehicle electrification is one of the most important emerging trends in the transportation sector and a necessary step towards the reduction of polluting substances and greenhouse gas (GHG) emissions. However, electric vehicles still present some environmental criticalities, such as indirect emissions related to the electricity used for charging the traction battery, which depends on the considered national electricity generation mix. The leading approach for quantifying the potential environmental impacts is the Life Cycle Assessment (LCA), a standardized methodology that takes into account the whole life cycle of a product, including production, use phase, and end-of-life.
Technical Paper

A Coupled Lattice Boltzmann-Finite Volume Method for the Thermal Transient Modeling of an Air-Cooled Li-Ion Battery Cell for Electric Vehicles

2019-09-09
2019-24-0207
Due to their ability to store higher electrical energy, lithium ion batteries are the most promising candidates for electric and hybrid electric vehicles, whose market share is growing fast. Heat generation during charge and discharge processes, frequently undergone by these batteries, causes temperature increase and thermal management is indispensable to keep temperature in an appropriate level. In this paper, a coupled Lattice Boltzmann-Finite Volume model for the three-dimensional transient thermal analysis of an air-cooled Li-ion battery module is presented. As it has already been successfully used to deal with several fluid-dynamics problems, the Lattice Boltzmann method is selected for its simpler boundary condition implementation and complete parallel computing, which make this approach promising for such applications.
X