Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Noise Source Identification of the Electric Bus Powertrain Using a Wavelet Transform and EEMD-RobustICA

2019-04-02
2019-01-0789
Electric buses have been used widely as cities' short-range commuter vehicles, because of their excellent power, fuel economy and emission characteristics. However, the lack of a noise masking effect for the traditional internal combustion engine, the high-frequency noise becomes more prominent for the powertrain system. The high-frequency noise gives people an unpleasant feeling on psychological and physiological. To control electric vehicle powertrain noise, the identification of the main noise source of the powertrain is well needed. In this paper, Empirical Mode decomposition (EMD) combined with Independent component Analysis (ICA) and continuous Wavelet transform (CWT) was used to identify the main noise source of the electric bus powertrain. The contribution of each noise source to the overall noise level was calculated and compared.
Technical Paper

Effect of Lubricating Oil Volatile Fractions on Diesel Particle Emissions

2018-04-03
2018-01-0637
In this study, the effect of volatile fractions from engine lubricating oil on diesel particle emissions were studied experimentally. One commercial CF lubricating oil was used and distilled to subtract the different volatile fractions with boiling temperature of 220 °C, 260 °C and 300 °C, respectively. Oils derived from this distillation process were applied as the lubricating oil and following engine experiments were conducted. Diesel primary particles were sampled with a costume designed thermophoretic system. A fast response particulate spectrum equipment was employed to study the size distribution and number concentration of particles in the exhaust. Transmission electron microscopy was used to characterize the size distribution of the primary diesel particles relates to different oil volatile fractions.
Technical Paper

Effects of Motor and Transmission on Noise Level of Electric Bus Powertrain Using Lead Packaging Method

2018-04-03
2018-01-1281
Because of the advantages of excellent power, fuel economy and zero-emission characteristics, electric buses have been used widely as cities’ short-range commuter vehicles. However, the high-frequency noise becomes more prominent for the powertrain system of the electric bus due to the lack of noise masking effect for the traditional internal combustion engine. To improve the noise characteristic of electric bus powertrain, the identification of the main noise source of the powertrain is well needed. In this paper, the effects of the motor and transmission on the noise level of the electric bus powertrain have been studied using lead packaging method. The variations of acoustical power level of the powertrain according to different rotation speed and torque under the conditions of only motor covered and only transmission covered have been discussed.
Technical Paper

Effect of Lube Oil Film Thickness on Spray/Wall Impingement with Diesel, M20 and E20 Fuels

2017-03-28
2017-01-0847
Spray impacting on a lube oil film with a finite thickness is a common phenomenon in IC engines and plays a critical role in the fuel-air mixture process and combustion. With the use of early injection strategy to achieve HCCI combustion mode in diesel engines, this phenomenon becomes more and more prominent. In addition, oxygenated fuels such as methanol and ethanol are regarded as alternative fuel and additives to improve the overall performance of HCCI engine. Therefore, a better understanding about the role of lube oil film thickness in methanol-diesel and ethanol-diesel blended fuels spray/wall impingement is helpful for accumulating experimental data to establish a more accurate spray/wall impingement model and optimize the combustion in HCCI engines. In this paper, the effect of lube oil film thickness on the characteristics of spray/wall impingement of different fuels are investigated in a constant volume bomb test system.
Technical Paper

Numerical Investigation of the Effect of Alcohol-Diesel Blending Fuels on the Spray-Wall Impingement Process

2016-04-05
2016-01-1276
Impingement of spray against the cylinder wall or piston bowl is an unavoidable physical process in homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) engines using early injection strategy. It directly affects fuel-air mixture formation, combustion and exhaust emission. In addition, the alcohol fuels such as methanol, ethanol and n-butanol are regarded as hopeful alternative fuels as well as fuel additive for HCCI and PCCI diesel engines to improve the emission level. The better understanding for the effect of alcohol-diesel blending fuel on the spray-wall impingement process is helpful for the improvement of HCCI and PCCI diesel engines. In this paper, the effects of three different alcohol-diesel blending fuels (methanol, ethanol and n-butanol) on the spray-wall impingement process were studied. Numerical investigation was performed in AVL FIRE code.
Technical Paper

Numerical Investigation of the Effect of Spray Cone Angle on Mixture Formation and CO/Soot Emissions in an Early Injection HCCI Diesel Engine

2015-04-14
2015-01-1070
Impingement of injected fuel spray against the cylinder liner (wall wetting) is one of the main obstacles that must be overcome in order for early injection Homogeneous Charge Compression Ignition (EI HCCI) combustion. In the strategies to reduce or prevent wall wetting explored in the past, limiting the spray cone angle was proved to be a useful approach. This paper is presented to study the effect of the spray cone angle on the mixture formation, particularly the region near the cylinder wall (wall wetting region), and CO/Soot emissions of an EI HCCI diesel engine. Three-dimensional modeling was performed in AVL FIRE code. The calculation grid was divided into three regions which were defined as the combustion chamber region, the wall wetting region, and the central regions. The history of the CO/soot mass of each region and the equivalent ratio/temperature (φ-T map) of wall wetting region were analyzed.
X