Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

A Study of Pad Properties vs. Friction, Wear and Brake Squeal: Processing/Porosity Effects

2016-09-18
2016-01-1915
As some brake engineers believe that brake squeal can be related to pad hardness, friction coefficient or compressibility while others disagree, a study has been undertaken to develop further insights. Two commercial formulas, one low-copper NAO and the other copper-free NAO, were made into disc pads of varying porosity without an underlayer and they were checked for specific gravity, porosity, hardness (HRS and HRR), natural frequencies, compressibility, friction, wear and squeal. With increasing porosity, the hardness and natural frequencies continue to decrease. The compressibility definitely does not increase, but rather slightly decrease or stays the same. The coefficient of friction decreases for the low-copper along with pad and disc wear reduction, and increases for the copper-free along with pad wear increase with no change in disc wear. No obvious correlation emerges between brake squeal and pad hardness, friction coefficient or compressibility.
Journal Article

Brake Squeal and Wheel Dust vs. Disc Wear: No-Copper, Low-Copper and High-Copper NAOs

2015-09-27
2015-01-2660
In a previous investigation, brake squeal was found to be related to disc wear, but not to pad wear or in-stop average coefficient of friction as tested according to the SAE J2522 performance procedure, using Low-Copper NAOs. To further validate the disc wear - squeal correlation, a variety of formulations of No-Copper, Low-Copper and High-Copper NAO disc pads were made and tested to investigate friction, pad wear, disc wear, brake squeal and wheel dust formation. It is found that disc weight loss measured at the end of the burnish cycle of the SAE J2522 (AK Master) is closely related to dynamometer/vehicle brake squeal and vehicle wheel dust formation, and that there is a critical disc wear rate of approximately 1.0 grams for the current brake system, below which brake squeal and wheel dust are minimal.
X