Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Thermodynamic Modeling of Blade Cooled Turboprop Engine Integrated to Solid Oxide Fuel Cell: A Concept

2018-04-03
2018-01-1308
In modern turboprop engines, reduction in emission and fuel consumption is the primary goals during the development of gas turbine aero engines. In this paper, a concept has been proposed for hybridizing the air blade cooled turboprop engines by integrating it with a fuel cell. The proposed study focuses on thermodynamic analysis of a turboprop engine integrated to a solid oxide fuel cell (SOFC) system. A solid oxide fuel cell is the perfect candidate for utilizing waste heat available at turboprop engine exhaust, through recuperation process. Integration of SOFC is ultimately leads to enhancement the overall performance of the turboprop-SOFC hybrid system. Power generated by the SOFC system can be utilized by the aircraft and in can complement the auxillary-power-unit (APU) and may even supplement it. On the basis of 1st and 2nd law of thermodynamic modeling analysis of a turboprop-SOFC system has been presented in this article.
Technical Paper

Thermoeconomic Investigation of Different Gas Turbine Cycle Configurations for Marine Application

2016-10-17
2016-01-2228
Global energy scenario requires thermal systems with higher efficiency and lower capital and operating cost. The paper deals with the thermoeconomic analysis of the gas turbine cycles with possible application as marine gas turbines. Thermoeconomic analysis of an energy conversion cycle is a combined study of thermodynamics and economics. Different configurations of gas turbine cycles have been analyzed using thermo-economic methodology keeping the gas turbine operating parameters (compressor pressure ratio, turbine inlet temperature, isentropic efficiencies of compressor & turbine etc fixed. Study has been carried out by considering appropriate objective function in a form of decision variables. This objective function combines both fuel cost and investment cost. Correlation functions having variables such as pressure ratio, isentropic efficiencies of compressor & turbine and turbine inlet temperature have been presented for obtaining capital cost for all equipments of the cycle.
Technical Paper

Thermodynamic and Emission Analysis of Basic and Intercooled Gas Turbine Cycles

2015-09-15
2015-01-2426
In comparison to other thermal power cycles, gas turbine based energy conversion cycles exhibit superior thermodynamic performance as well as reduced emission. Gas turbine manufacturers and research & development (R&D) organizations are working on modification in basic gas turbine (BGT) cycle, which are intended to improve the basic gas turbine cycle thermodynamic performance and reduce emissions. The present work reports a comparison of thermodynamic performance, NOx and CO emission for basic and intercooled gas turbine (IcGT) cycles. Various cycle operating parameters such as compressor-pressure-ratio (rp,c), combustor-primary-zone-temperature, equivalence-ratio, and residence time of gas turbine based cycles has been examined. IcGT cycle exhibits higher gas turbine specific work and gas turbine efficiency in comparison to BGT cycle for the same rp,c and turbine rotor inlet temperature.
X