Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Drag Reduction Study on Vehicle Shape Optimization Using Gradient-based Adjoint Method

2024-04-09
2024-01-2528
Given the increasingly stringent environmental regulations, most automotive manufacturers were confronted with tougher exhaust emission and energy consumption standards, thus, improving fuel economy has been the top priority for OEMs during the past few years. In this context, it is quite essential to improve the aerodynamic characteristics, especially drag reduction in vehicle shape development, considering its close correlation with fuel consumption and E-range. Of all the optimization approaches, the gradient-based adjoint method has currently received growing attention for its proven effectiveness in calculating the drag sensitivity with respect to geometry parameters, which is indispensable for subsequent shape modification. In this work, we aim to utilize the adjoint approach to optimize the vehicle shape for a lower drag on the DrivAer models.
Technical Paper

Adjoint-Based Model Tuning and Machine Learning Strategy for Turbulence Model Improvement

2022-03-29
2022-01-0899
As turbulence modeling has become an indispensable approach to perform flow simulation in a wide range of industrial applications, how to enhance the prediction accuracy has gained increasing attention during the past years. Of all the turbulence models, RANS is the most common choice for many OEMs due to its short turn-around time and strong robustness. However, the default setting of RANS is usually benchmarked through classical and well-studied engineering examples, not always suitable for resolving complex flows in specific circumstances. Many previous researches have suggested a small tuning in turbulence model coefficients could achieve higher accuracy on a variety of flow scenarios. Instead of adjusting parameters by trial and error from experience, this paper introduced a new data-driven method of turbulence model recalibration using adjoint solver, based on Generalized k-ω (GEKO) model, one variant of RANS.
X