Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Monolithic, Lightweight, and Pedestrian-Safe Thermoplastic Energy-Absorbing System for Automobiles

2015-01-14
2015-26-0168
With a significant increase in awareness of safety and sustainability among the automobile original equipment manufacturers and end users, every car manufacturer is looking for lightweight, safe and cost-effective solutions for every unit present in their vehicle. The latter gets much more focus in developing countries, where the automobile market is extremely cost sensitive. Further, with implementation of the proposed global technical regulations on pedestrian safety in the near future and low-speed vehicle damageability requirements, demand for a low-cost, lighter and safer bumper system is ever increasing. This paper focuses on development of a unique thermoplastic energy-absorbing device for vehicle bumpers. Conventionally, major energy absorbing members of these bumper systems consist of three separate pieces: energy absorber, bumper beam and crash cans. A hybrid approach based on logical reasoning and topology optimization is used to conceive the design.
Technical Paper

Thermoplastic Rear Bumper Beams for Automobile Low-Speed Rear Impact

2011-04-12
2011-01-0544
High repair cost and the subsequent increase in insurance cost in a highly competitive automobile market have forced every automobile original equipment manufacturer (OEM) to comply with the FMVSS and ECE-42 regulatory requirements of low-speed vehicle damageability. Although, the terminologies used are different, similar regulatory requirements also exist in Asia-pacific region. At the rear side, reducing the damage to expensive vehicle components in a low-speed pendulum impact or a low-speed barrier impact can attain a good rating for low-speed vehicle damageability. This paper focuses on a detailed study of various lightweight plastic rear beam designs and their effectiveness in reducing the damage to the vehicle during low-speed vehicle-to-vehicle collision or vehicle to barrier collision.
X