Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Active Steering and Anti-Roll Shared Control for Enhancing Roll Stability in Path Following of Autonomous Heavy Vehicle

2019-04-02
2019-01-0454
Rollover accident of heavy vehicle during cornering is a serious road safety problem worldwide. In the past decade, based on the active intervention into the heavy vehicle roll dynamics method, researches have proposed effective anti-roll control schemes to guarantee roll stability during cornering. Among those studies, however, roll stability control strategies are generally derived independent of front steering control inputs, the interactive control characteristic between steering and anti-roll system have not been thoroughly investigated. In this paper, a novel roll stability control structure that considers the interaction between steering and anti-roll system, is presented and discussed.
Technical Paper

A Novel Direct Yaw Moment Control System for Autonomous Vehicle

2018-08-07
2018-01-1594
Although autonomous driving technology has become an emerging research focus, safety is still the most crucial concern when autonomous vehicles leave research laboratory and enter public traffic. Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment, is an important system to ensure the driving stability of vehicle under extreme conditions. Traditional DYC system must need to take into account driver’s intention and vehicle dynamics. However, for autonomous vehicle, no human is involved in driving process, and enforcing traditional DYC system may conflict with the demands of the desired path. Therefore, in this paper, a novel DYC system for autonomous vehicle is proposed to simultaneously suppress lateral path tracking deviation while maintaining autonomous vehicle stability at or close to the driving limits. In the hardware aspect, an integrated-electro-hydraulic brake (IEHB) actuator scheme is adopted.
Technical Paper

Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System

2017-03-28
2017-01-1565
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
X