Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

TRACE CONTAMINANTS CONTROL ASSEMBLY DEVELOPMENT FOR THE JAPANESE CLOSED ECOLOGY EXPERIMENT FACILITIES

1994-06-01
941446
In the closed environments such as manned space station, it is necessary to remove contaminant gas to keep a suitable environment. Removal of gaseous contaminants generated from crew, animals, and plants is important function to keep the environment below the allowable level in the Closed Ecology Experiment Facilities (abbreviated as CEEF). CEEF consist of three modules for habitat, animal and plant, the supporting facilities for each module and a plant cultivation facility. CEEF are scheduled to be constructed from 1994 in Aomori Prefecture, northern part of Japan. For designing Trace Contaminant Control Assembly (TCCA) for CEEF, the following six (6) trace contaminants have been selected as major contaminant gas in CEEF; Ammonia (NH3) Methane (CH4) Ethylene (C2H4) Carbon Monoxide (CO) Nitrogen Dioxide (NO2) Sulfur Dioxide (SO2) Ethylene is well-known as an aggressive contaminant to plant growth and maturity.
Technical Paper

Water Recycling System for CELSS Environment in Space

1990-07-01
901208
System configurations of water recycling for space use have been continued through theoretical and experimental studies. The water recycling system plays a central role in a Closed Ecological Life Support System (CELSS) which offers necessary environment and life styles in closed environment such as space stations, lunar bases, etc.. Membrane technology is a possible candidate for purifying waste water produced by crew use facility, plant cultivation facility, etc. In considerations of the system compactness realizing energy saving, membrane distillation has been revealed to be a suitable purification process. Ground experiments has been performed using membrane filtration processes and membrane distillation process. Thermopervaporation technology with hydrophobic membrane is utilized in the distillation process. The energy saving is achieved by thermal return of condensation energy.
X