Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Carbon Dioxide Scrubbers for Controlling the Gaseous Composition of Spaceflight Plant Growth Chambers - Design Trades and Test Results

2005-07-11
2005-01-2954
Small spaceflight life science experiments, such as plant growth chambers and animal habitats, operate in unique environments. The experiments are often sealed systems that control atmospheric constituents, temperature, and humidity. Chemical scrubbers can be an efficient and reliable way to actively remove carbon dioxide for shorter experiment durations because they do not require power or complex technologies to operate. Several commercially available scrubbers were tested in both low and high humidity environments, and at low concentration levels of carbon dioxide similar to those found in plant chamber applications, to find a scrubber that was both effective and efficient for use in small life sciences experiments.
Technical Paper

Collaborative Development of a Space Flight Experiment Comparing Two Plant Nutrient Delivery Systems

2000-07-10
2000-01-2509
Engineers and scientists from BioServe Space Technologies and Kennedy Space Center (KSC) are developing a flight-rated payload for the evaluation of two space-based plant nutrient delivery systems (NDS's). The hardware is comprised of BioServe's Plant Generic Bioprocessing Apparatus (PGBA) and KSC's Porous Tube Insert Module (PTIM). The PGBA, a double-middeck locker, will serve as the host carrier for the PTIM and will provide computer control of temperature, relative humidity, and carbon dioxide levels. The PTIM will insert into the PGBA's growth chamber and will facilitate the side-by-side comparison of the two NDS's: 1) the porous tube NDS, consisting of six porous tubes with seeds mounted in close proximity to the tubes, and 2) a substrate-based NDS, with three compartments each containing a porous tube embedded in a particulate substrate.
Technical Paper

Atmosphere Composition Control of Spaceflight Plant Growth Growth Chambers

2000-07-10
2000-01-2232
Spaceflight plant growth chambers require an atmosphere control system to maintain adequate levels of carbon dioxide and oxygen, as well as to limit trace gas components, for optimum or reproducible scientific performance. Recent atmosphere control anomalies of a spaceflight plant chamber, resulting in unstable CO2 control, have been analyzed. An activated carbon filter, designed to absorb trace gas contaminants, has proven detrimental to the atmosphere control system due to its large buffer capacity for CO2. The latest plant chamber redesign addresses the control anomalies and introduces a new approach to atmosphere control (low leakage rate chamber, regenerative control of CO2, O2, and ethylene).
X