Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Relevance of Research and Motor Octane Numbers to the Prediction of Engine Autoignition

2004-06-08
2004-01-1970
Links between the RON, MON and Octane Index (OI) of a gasoline are explored and factors influencing knock severity are discussed. The OI was calculated by considering how the autoignition delay time changes with temperature and pressure. Three fuels were examined: a 65/35% toluene/heptane test fuel, and two primary reference fuels (PRF), one with the RON value of the test fuel and the other with the MON value. PRF autoignition times were taken from Adomeit et al and test fuel autoignition times were generated from mathematical models of RON/MON tests plus two experimental sets of engine autoignition data. The toluene/heptane OI depended strongly on engine conditions and could easily exceed the RON. With a lean mixture at high pressure it was 100.2 whereas the RON was only 83.9. Knock severity is governed by the nature of localized “hot spots”. Severe knock is associated with developing detonations towards the end of the delay time.
Technical Paper

Prediction of Combustion Chamber Deposit Growth in SI Engines

1997-10-01
972835
Combustion chamber deposit (CCD) formation in SI engines is a complex phenomenon which is dependent on a number of fuel and engine parameters. A mathematical model has been developed, based upon a previously proposed mechanism of CCD formation, which describes the physical and chemical processes controlling the growth of deposits in SI combustion chambers. The model allows deposit thickness to be predicted as a function of time, taking into account gasoline composition and factors influenced by engine operating conditions. Piston top deposit thicknesses predicted by the model for 38 unadditivated fuels show a strong correlation with data from three different bench engine tests. The model offers the possibility of predicting the amount of CCD produced by unadditivated gasolines for a range of engine designs, operating conditions and test durations.
X