Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Ambient Temperature on Flame Lift-off and Soot Formation of Biodiesel Sprays

2010-04-12
2010-01-0606
Pure diesel and biodiesel were tested inside a constant-volume combustion chamber which simulates the in-cylinder conditions similar to a diesel engine and is more flexible to change the engine operation boundary conditions. The ambient temperature effect on flame lift-off length for both fuels was first investigated with fixed injection pressure, duration, ambient density, and ambient oxygen concentration. This was determined from time-averaged OH chemiluminescence imaging technique. Then, the impacts of the observed lift-off length variations on oxygen ratio upstream of the lift-off location and the soot formation process were also studied. A Forward Illumination Light Extinction (FILE) soot measurement technique was adopted to study the soot formation process. The FILE technique with the capability of two-dimensional time-resolved quantitative soot measurement provides the much-needed information to investigate the soot formation mechanism.
Technical Paper

An Investigation of Multiple Scattering in a Hollow-Cone Spray

2007-04-16
2007-01-0648
Laser diagnostics of fuel sprays are often hampered by multiple scattering effects. Planar laser-induced exciplex fluorescence (PLIEF) and Mie scattering images of a spray are presented, and the effects of multiple signal scattering are explored. A hollow-cone spray is cut in half with a spray cutter, and then imaged from either side. In one set, signal passes through the spray to the camera (back-cut images), and in the other set it does not (front-cut images), showing the effect of passing the signal through the spray to the camera. The cut spray is characterized with a phase Doppler anemometer (PDA) and Sauter Mean Diameter (SMD) is seen to range from 10-30 μm. Operational guidelines for using the cutter are presented. It was determined that a film forms on the cutter face 3-5 ms after the start of injection (ASOI) depending on the cutter temperature. Stripped droplets from this film increase droplet concentration and SMD in the center of the spray if the cutter is used improperly.
Technical Paper

Modeling of Air Fuel Mixing in a Stratified Gasoline Direct Injection Engine Using Multicomponent Fuel Representation

2003-03-03
2003-01-0067
This paper describes a numerical study on air/fuel preparation process in a direct-injected spark-ignition engine under partial load stratified conditions. The fuel is represented as a mixture of four components with a distillation curve similar to that of actual gasoline, and its vaporization processes are simulated by two recently formulated multicomponent vaporization models for droplet and film, respectively. The models include major mechanisms such as non-ideal behavior in high-pressure environments, preferential vaporization, internal circulation, surface regression, and finite diffusion in the liquid phase. A spray/wall impingement model with the effect of surface roughness is used to represent the interaction between the fuel spray and the solid wall. Computations of single droplet and film on a flat plate were first performed to study the impact of fuel representation and vaporization model on the droplet and film vaporization processes.
X