Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Technical Paper

Development of Emission Transfer Functions for Predicting the Deterioration of a Cu-Zeolite SCR Catalyst

2009-04-20
2009-01-1282
Urea selective catalytic reduction (SCR) catalysts have the capability to deliver the high NOx conversion efficiencies required for future emission standards. However, the potential for the occasional over-temperature can lead to the irreversible deactivation of the SCR catalyst. On-board diagnostics (OBD) compliance requires monitoring of the SCR function to make sure it is operating properly. Initially, SCR catalyst performance metrics such as NOx conversion, NH3 oxidation, NH3 storage capacity, and BET surface area are within normal limits. However, these features degrade with high temperature aging. In this work, a laboratory flow reactor was utilized to determine the impact on these performance metrics as a function of aging condition. Upon the completion of a full time-at-temperature durability study, four performance criteria were established to help determine a likely SCR failure.
Technical Paper

Using Diesel Aftertreatment Models to Guide System Design for Tier II Emission Standards

2002-06-03
2002-01-1868
Ford Motor Company is participating in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to explore the development of innovative emission control systems for advanced compression-ignition direct-injection (CIDI) transportation engines. CIDI (or diesel) engines have the advantages of a potential 40% fuel economy improvement and 20% less CO2 emissions than current gasoline counterparts. To support this goal, Ford plans to demonstrate an exhaust emission control system that provides high efficiency particulate matter (PM) and NOx reduction. Very low sulfur diesel fuel will be used to enable low PM emissions, reduce the fuel economy penalty associated with the emission control system, and increase the long-term durability of the system. The end result will allow vehicles with CIDI engines to be Tier II emissions certified at a minimum cost to the consumer.
X