Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Time Resolved Exhaust Port Sampling Studies Related to Hydrocarbon Emissions from SI Engines

1998-10-19
982558
The role of post-combustion oxidation in influencing exhaust hydrocarbon emissions from spark ignition engines has been identified as one of the major uncertainties in hydrocarbon emissions research [l]*. While we know that post-combustion oxidation plays a significant role, the factors that control the oxidation are not well known. In order to address some of these issues a research program has been initiated at Drexel University. In preliminary studies, seven gaseous fuels: methane, ethane,ethene,propane,propene, n-butane, 1-butene and their blends were used to examine the effect of fuel structure on exhaust emissions. The results of the studies presented in an earlier paper [2] showed that the effect of fuel structure is manifested through its effect on the post-combustion environment and the associated oxidation process. A combination of factors like temperatures, fuel diffusion and reaction rates were used to examine and explain the exhaust hydrocarbon emission levels.
Technical Paper

A Reduced Chemical Kinetic Model for Autoignition of the Butanes

1996-10-01
962106
A reduced chemical kinetic model by Li et al. [1]* for predicting primary reference fuels' reactivity and autoignition behavior was modified to apply to the butanes, and it was correlated to experimental results from the non-fired engine cycles under skip fired conditions. The fuels examined in this work were neat n-butane and n-butane/iso-butane blends (10, 20, and 48 percent by volume iso-butane). In our initial work using measured pressure data from the first skip cycle, we modified Li et al.'s model by only adjusting the fuel specific rate parameters of the alkylperoxy radical (RO2·) isomerization reaction, the reaction of aldehydes with OH·, and the reaction forming cyclic ethers. In this work, analysis was extended to the second skip cycle and additional oxidation rate parameters with high fuel sensitivity were adjusted. Several reactions, which are not significant in butane oxidation, were temporarily made to be inactive in the model.
Technical Paper

Prediction of Preignition Reactivity for n-Butane and iso-Butane Blends Using a Reduced Chemical Kinetic Model

1996-05-01
961154
Recently, we reported the development of a new reduced chemical kinetic model for predicting reactivity and autoignition behavior of primary reference fuels in a motored research engine. The predicted oxidation behavior (ignition delay, preignition heat release, and evolution of key chemical species) is in fairly good agreement with experiments. In addition, the model reproduced the experimentally observed dependence of overall reactivity on charge density and manifold inlet conditions. This paper reports our initial effort to apply this new reduced chemical kinetic model to other fuels. Specifically, the model was tested using neat n-butane and n-butane/iso-butane blends (10, 20, and 48 percent by volume iso-butane) under skip fired conditions. The only adjustments made in the model were to the fuel specific rate parameters of the RO2· isomerization reaction, the reaction of aldehydes with OH·, and the reaction forming cyclic ethers.
Technical Paper

Development of a Reduced Chemical Kinetic Model for Prediction of Preignition Reactivity and Autoignition of Primary Reference Fuels

1996-02-01
960498
A reduced chemical kinetic model has been developed for the prediction of major oxidation behavior of primary reference fuels (PRF's) in a motored engine, including ignition delay, preignition heat release, fuel consumption, CO formation and production of other species classes. This model consists of 29 reactions with 20 active species and was tuned to be applicable for the neat PRF's, 87 PRF and 63 PRF, and at various engine conditions. At the motored engine condition where detailed species data were generated, the model reproduces the ignition delay and the preignition heat release quite well (to within 15%). Fuel consumption and CO formation predictions differed from experiments by at most 25% for all of the four fuels. Predictions for other species classes generally agreed with experiments. As inlet temperature was varied, the experimentally observed negative temperature coefficient (NTC) behavior of iso-octane and 87 PRF was reproduced by the model.
X