Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

On Simulating Passenger Car Side Window Buffeting

2003-03-03
2003-01-1316
Side window buffeting is simulated for a passenger car using unstructured mesh and a finite volume based CFD solver. We first provide a description of the analysis method. Two vehicle configurations are considered: front window open and rear window open. The accuracy of RNG k-ε and LES turbulence models is evaluated for this application by comparing predicted buffeting frequency spectrum with corresponding experimental measurements made in a wind tunnel. Further, the effects of several parameters on buffeting frequency and amplitude are studied. They include vehicle speed, yaw angle, inlet turbulent intensity, observer location inside the passenger compartment, presence of exhauster and side view mirror design. Simulation results prove to follow the trends observed in the experiments.
X