Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Use of tribological and AI models on vehicle emission tests to predict fuel savings through lower oil viscosity

2022-02-04
2021-36-0038
On urban and emission homologation cycles, engines operate predominantly at low speeds and part loads where engine friction losses represent around 10% of the consumed fuel energy but would account for 25% of the fuel consumption once combustion efficiency is taken into account. Under such mild conditions, engine and engine oil temperatures are also lower than ideal. The influence of oil viscosity on friction losses are significant. By reducing lubricant viscosity, engine friction, fuel consumption and emissions are reduced. Tribological and machine learning models were investigated to predict the effect of oil viscosity on fuel consumption during the FTP75 emission cycle with the use of detailed actual emission test measurements. Oil viscosity was calculated with the measured oil temperature. As the same vehicle transient is followed in the cold and hot phases, the models were evaluated by comparing their prediction of fuel consumption in the hot phase versus the measured value.
Technical Paper

Advantages and Challenges for Low Viscosity Oils in Emergent Countries

2017-11-07
2017-36-0387
Low viscosity combined with appropriated additive technology is one of the main paths to reduce friction on Internal Combustion Engines. Japan is on the cutting edge of low viscosity oils, having already available SAE 0W-8 in the market. On the other hands, in emergent countries like Brazil, SAE 15W-40 is still used in some passenger cars while the Japanese origin car brands use SAE 0W-20. Lubricant friction additives type also differs depending on the original equipment manufacturer (OEM) origin, and the Japanese ones usually containing high amounts of the Molybdenum type. In this paper, some of the advantages and challenges of using low viscosity oils are discussed and emphasis is given in the friction reduction obtained with the synergic effects of the right choice of additives components type and the material/coating used in the engine parts. Ring-liner rig and floating liner engine tests comparing different oils will be presented.
Technical Paper

Folded Metal and Other Surface Parameters on Combustion Engine Cylinders

2014-09-30
2014-36-0323
In the last years, sophisticated analyses and control of topography parameters have been introduced to study engine bore cylinders. Such surface characteristics have impact on friction and wear of the engine, with effects on fuel consumption and durability. Among such characteristics, folded metal blocking the honing grooves has received much attention, but its quantification and actual impact on engine performance is still under discussion, both in the academia and in the industry. In this work, a methodology was developed to mathematically quantify the folded metal present in engine bores. The method is compared to others described in the literature and in use by some European automotive manufacturers. The quantification method, based on topography measurements, was also compared with other analyses, such as optical and scanning electron microscopy. The necessary resolution of the topography measurement and some recommendations for the analysis are given.
Technical Paper

Comparison of the Potential to Reduce Fuel Consumption by Engine Energy Losses Mapping

2013-10-07
2013-36-0221
Motivated by the demand for the reduction of fuel consumption, in particular to meet the engine energy efficiency goals of the Brazilian incentives legislation (INOVAR AUTO), this paper proposes a method to identify potential for energy efficiency and exemplifies it through three engines of the Brazilian market. The proposed method consists in identify the engine losses in different operating points (speed x load) through combustion mapping and the basic formulations which describe the energy/losses share. These data are grouped into 12 map sections, allowing the identification of the ones with more improvement potential. The baseline engine is 1.6 l naturally aspirated, port injection and was tested with E100 fuel (100% Ethanol). Engine #2 is similar to the baseline but with 4 valves per cylinder and a lower viscosity oil. The engine #3 is a more advanced engine: turbo charged, direct fuel injection, variable valve train and piloted pumps.
Journal Article

Piston Ring Tribological Challenges on the Next Generation of Flex-fuel Engines

2010-05-05
2010-01-1529
With the current use of bio-renewable fuel, the application of Ethanol in Flex-Fuel vehicles presents a very low CO2 emission alternative when the complete cycle, from plantation, fuel production, till vehicle use, is considered. In Brazil more than 80% of the car production is composed of Flex-Fuel vehicles. Due to the lower heating content of the Ethanol, more aggressive combustion calibrations are used to obtain the same engine power than when burning gasoline. Such Ethanol demands, associated with the continuous increase of engine specific power has lead to thermo-mechanical loads which challenges the tribology of piston rings. The ethanol use brings also some specific tribological differences not very well understood like fuel dilution in the lube oil, especially on cold start, corrosive environment etc. Under specific driving conditions, incipient failures like spalling on nitrided steel top rings have been observed.
Technical Paper

Gasoline Direct Injection Engines - A Bibliographical Review

1997-12-31
973113
Recently, Gasoline Direct Injection (GDI) engine has reached mass production. Fuel economy up to 35% is claimed, at urban driving conditions, by using stratified charge combustion. It also reduces HC emissions at cold start. Most of the car manufactures are researching GDI or even intend to produce it in the near future. If the promised goals are actually achieved, a great change in the development focus for automotive engines will occur. In GDI engines, ultra lean burn, stratified charge combustion is achieved by injecting fuel directly into the chamber during compression stroke (“late Injection”). In contrast, at higher power conditions, the GDI operates in homogeneous charge and fuel is injected during intake stroke (“early injection”). This paper intends to summarize some information about Gasoline Direct Injection engines and possible effects on Piston rings. First, some basic concepts about combustion, judged to be necessary to understand GDI engines, are introduced.
Technical Paper

Nitrited Steel Piston Rings for Internal Combustion Engines

1994-11-01
942394
The evolution of internal combustion engines has led to friction reduction as well as to gaseous emissions reduction, demanding the use of narrower rings. Nodular cast iron is used satisfactorily for compression piston rings, with wear resistant coatings to improve their durability. However, for more severe applications and rings narrower than 1.2mm, even the nodular cast iron mechanical resistance is not enough. In this way, the use of steel is recommended, which may have its tribological properties improved by the nitriding thermochemical treatment. This paper presents the characteristics of the materials and of the nitriding process of compression and oil control rings as well as bench and dynamometric test results run during the development of these products.
Technical Paper

Influence Of Top Ring End Gap Types At Blow-By Of Internal Combustion Engines

1993-10-01
931669
The gas that flows from the combustion chamber to crankcase of internal combustion engines (“Blow-By”) and the reverse flow (“Blow-Back”) have detrimental effects in the engine power, pollutant emissions and lubricant degradation. A main factor to control this flow is the first piston ring gap. The influence of the area defined by the gap, specially of the chamfer at end gap, is analyzed by computer simulation and dynamometer tests. An unusual type of piston ring contact face coating at end gap, allows a reduction of up to 50% in the ring gap area and engine Blow-By.
Technical Paper

Liner Honing Quality Main Characteristics

1992-11-01
921453
The cylinder bore honing quality is an essential factor for a good engine performance and durability. A bad surface finish can result in an excessive lubricant oil consumption, high piston ring wear and scuffing occurrence. In this paper the most important characteristics of bore honing for cast iron cylinders and their influence in the combustion engine performance are described and discussed. Despite its importance, the bore honing is commonly undervalued due to various reasons including the difficulty of a practical but sufficient method of quality qualifying. Some honing commonly misunderstood concepts are detailed and SEM photographs of bore surface from both good and bad finish are presented. At the end of this paper it is also presented a recommendation for a practical evaluation method of honing quality.
X