Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Further Experiments on the Effect of Bulk In-Cylinder Temperature in the Pressurized Motoring Setup Using Argon Mixtures

2020-04-14
2020-01-1063
Mechanical friction and heat transfer in internal combustion engines have long been studied through both experimental and numerical simulation. This publication presents a continuation study on a Pressurized Motoring setup, which was presented in SAE paper 2018-01-0121 and found to offer robust measurements at relatively low investment and running cost. Apart from the limitation that the peak in-cylinder pressure occurs around 1 DegCA BTDC, the pressurized motoring method is often criticized on the fact that the gas temperatures in motoring are much lower than that in fired engines, hence might reflect in a different FMEP measurement. In the work presented in SAE paper 2019-01-0930, Argon was used as the pressurization gas due to its high ratio of specific heats. This allowed to achieve higher peak in-cylinder temperatures which close further the gap between fired and motored mechanical friction tests.
Technical Paper

The Experimental Validation of a New Thermodynamic Method for TDC Determination

2007-09-16
2007-24-0052
In-cylinder pressure analysis is becoming more and more important both for research and development purpose and for control and diagnosis of internal combustion engines; directly measured by means of a combustion chamber pressure transducers or evaluated by analysing instantaneous engine speed [1,2,3,4], in-cylinder pressure allows the evaluation of indicated mean effective pressure (IMEP), combustion heat release, combustion phase, friction pressure, etc…It is well known to internal combustion engine researchers that for a right evaluation of these quantities the exact determination of Top Dead Centre (TDC) is of vital importance: a 1° error on TDC determination can lead to evaluation errors of about 10% on the IMEP and 25% on the heat released by the combustion.
X