Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Technical Paper

Simplified Methodology for Modeling Cold Temperature Effects on Engine Efficiency for Hybrid and Plug-in Hybrid Vehicles

2010-10-25
2010-01-2213
For this work, a methodology of modeling and predicting fuel consumption in a hybrid vehicle as a function of the engine operating temperature has been developed for cold ambient operation (-7°C, 266°K). This methodology requires two steps: 1) development of a temperature dependent engine brake specific fuel consumption (BSFC) map, and, 2) a data-fitting technique for predicting engine temperature to be used as an input to the temperature dependent BSFC maps. For the first step, response surface methodology (RSM) techniques were applied to generate brake specific fuel consumption (BSFC) maps as a function of the engine thermal state. For the second step, data fitting techniques were also used to fit a simplified lumped capacitance heat transfer model using several experimental datasets. Utilizing these techniques, an analysis of fuel consumption as a function of thermal state across a broad range of engine operating conditions is presented.
Technical Paper

Two-Step Variable Valve Actuation for Fuel Economy, Emissions, and Performance

2003-03-03
2003-01-0029
Variable-Valve Actuation (VVA) provides improvements in engine efficiency, emissions, and performance by changing the valve lift and timing as a function of engine operating conditions. Two-Step VVA systems utilize two discrete valve-lift profiles and may be combined with continuously variable cam phasing. Two-Step VVA systems are relatively simple, low cost and easy to package on new and existing engines, and therefore, are attractive to engine manufacturers. The objective of this work was to optimize Two-Step system design and operation for maximum system benefits. An Early-Intake-Valve-Closing (EIVC) strategy was selected for warmed-up operating conditions, and a Late-Intake-Valve-Opening (LIVO) strategy was selected for the cold start. Engine modeling tools were used to fundamentally understand the thermodynamic and fluid mechanical processes involved.
X