Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Low Volatility ZDDP Technology: Part 1 - Engines and Lubricant Performance in Field Applications

2007-07-23
2007-01-1990
Newly developed, low volatility zinc dialkyldithiophosphate (ZDDP) technology significantly reduces the amounts of volatile phosphorus (P) species while retaining their antiwear protective behavior and antioxidant performances. In the past researchers gathered a variety of engine data supporting the hypothesis that P volatility can have a significant impact on catalytic converter efficiency, but corresponding field performance results were limited. A recent field trial was conducted with New York City taxi cabs that provided extended sets of engine and drain performance parameters data. This trial compared side-by-side performance of oils formulated with conventional and low volatility ZDDPs. Following completion of the test, the extensive engine inspections and used oil analysis revealed excellent antiwear control and oxidation inhibition with both types of ZDDP technologies.
Technical Paper

Effects of Lubricant Derived Chemistries on Performance of the Catalyzed Diesel Particulate Filters

2005-05-11
2005-01-2168
Forthcoming on-highway 2005/2007 European and North American emission regulations will require modern diesel engines to be equipped with Diesel Particulate Filters (DPF) capable of trapping up to 99% of the exhaust particulate matter. Since diesel particulates (soot) accumulate in the filter over time, the overall system needs to be regenerated by attaining the ignition temperature of soot, which in the presence of oxygen is >600 °C. Catalyzed DPFs regenerate at temperatures as low as ∼300 °C. One of the major issues facing OEMs, aftertreatment system manufacturers, and lubricant formulators is the potential effects of the lubricant-derived ash deposits and their impact on a pressure increase across filters, as well as overall filter performance and its service characteristics.
X