Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Time Dependent Model for the Lunar Radiation Environment

2005-07-11
2005-01-2831
In view of manned missions targeted to the Moon, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows determination of the particle flux and spectra at any time and at any point of the lunar surface. With this goal in mind, a new model of the Moon’s radiation environment due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particles reach the lunar surface, and are transported all throughout the subsurface layers, with backscattering patterns taken into account. The surface itself has been modeled as regolith and bedrock, with composition taken from the results of the instruments flown on the Apollo missions, namely on the Apollo 12 from the Oceanus Procellarum landing site. Subsurface environments like lava tubes have been considered in the analysis.
Technical Paper

Neutron Environment Calculations for Low Earth Orbit

2001-07-09
2001-01-2327
The long term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind, which varies over the solar cycle. The HZETRN high charge and energy transport code developed at NASA Langley Research Center can be used to evaluate the neutron environment on ISS. A time dependent model for the ambient environment in low earth orbit is used. This model includes GCR radiation moderated by the Earth’s magnetic field, trapped protons, and a recently completed model of the albedo neutron environment formed through the interaction of galactic cosmic rays with the Earth’s atmosphere. Using this code, the neutron environments for space shuttle missions were calculated and comparisons were made to measurements by the Johnson Space Center with onboard detectors.
X