Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Chemical Kinetic Analysis with Two-Zone Model on Spark Knock Suppression Effects with Hydrogen Addition at Low and High Engine Speeds

2022-01-09
2022-32-0089
Spark knock suppression with hydrogen addition was investigated at two engine speeds (2000 rpm and 4800 rpm). The experimental results showed that the spark knock is strongly suppressed with increasing hydrogen fraction at 2000 rpm while the effect is much smaller at 4800 rpm. To explain these results, chemical kinetic analyses with a two-zone combustion model were performed. The calculated results showed that the heat release in the end gas zone rises in two stages with a remarkable appearance of low temperature oxidation (LTO) at 2000 rpm, while a single stage heat release without apparent LTO process is presented at 4800 rpm due to the shorter residence time in the low temperature region.
Technical Paper

Auto-Ignition Characteristics of Hydrocarbons and Development of HCCI Fuel Index

2007-04-16
2007-01-0220
It is known that the regular gasoline and primary reference fuel (PRF), that have the same research octane number, show the different HCCI engine performance, because of the different phasing and heating value of low temperature heat release. This means that the research octane number is not an “all-round” auto-ignition index, and another index must be developed to evaluate the HCCI combustion characteristics. In this paper, eleven pure hydrocarbon components were blended into twenty three different kinds of model fuels (surrogate fuels), labeled BASE, MC01-MC11 and K01-K11, and the HCCI engine tests were performed under five different intake air temperature conditions to change the auto-ignition characteristic of each hydrocarbon component. As HCCI combustion can be described as a lean and slow gasoline knocking phenomenon, an analysis of HCCI combustion data gives us much more important knowledge of gasoline knocking phenomenon.
Technical Paper

Effect of Intake Valve Deposits and Gasoline Composition on S.I. Engine Performance

1992-10-01
922263
Valve deposits in gasoline engines increase with time, absorbing fuel during acceleration and releasing fuel during deceleration. Valve deposits insulate the heat release from the cylinder and this phenomenon is the cause of bad fuel vaporization. In this way, the deposits greatly affect the driveability and exhaust emissions. Using a 3.OL MPI(Multipoint Injection) engine, we measured the quantity of fuel that deposits at the intake port, and the throttle response (using a wall-flow meter made by Nissan Motor Co.1), 2) to study the deposits effect on driveability and exhaust emissions at a low temperature. The deposits were formed on the intake valve surface (about 8.0 on the CRC deposit rating scale) through 200 hours of laboratory engine stand operation. At low temperature, C9 and C10 hydrocarbons tend to stick to the intake port surface and intake valve as “wall-flow”; this is one cause of bad driveability.
X