Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

NVH Robustness Design of Axle Systems

2003-05-05
2003-01-1492
This paper presents the principles of robustness design of axle system dynamics to reduce vehicle system related axle gear whine. Through examining the physics of the axle gear noise, the influence of the system dynamics are identified as two parts, i.e., the dynamics mesh force generated at the gear meshing per unit gear mesh motion variation; and the force transmissibility from mesh to the axle housing, and then further to the bracket attachments. The noise sensitive design parameters are identified and discussed. Component design requirements are proposed to minimize the system resonances in the typical gear mesh frequency range. The use of FEA models for system understanding and further design tuning is illustrated.
Technical Paper

Dynamic Analysis of Automotive Gearing Systems

1992-02-01
920762
The standard approach often used to reduce gear noise in automotive system is to minimize the transmission error. This is done by using stringent quality control measures in the gear manufacture, selecting desirable gear parameters, and applying profile modifications. This approach may be effective in many instances. However, there are numerous examples where the gear quality is the best that can be achieved within the manufacturing constraints, and the noise levels still exceed acceptable limits. In many cases, the system dynamics cause the gear train design to be highly sensitive to manufacturing induced transmission error. Therefore, it is advantageous to perform dynamic analysis to examine the influence of gear train dynamics and design parameters on gear noise. Proper design modifications may then be identified and applied to reduce gear noise levels.
X