Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A STUDY ON THE PLASMA JET DIFFUSIVE COMBUSTION

2001-12-01
2001-01-1860
A new concept of combustion which is using the characteristic of plasma jet ignition, that is the plasma jet diffusive combustion is proposed. The constant volume vessel is used for the experiment, and methanol is charged in the cavity of plasma jet injector and the air at room temperature and atmospheric pressure is charged in the combustion chamber. The combustion characteristic is analyzed by measuring the combustion pressure and visualization of the combustion process. The plasma jet injector configuration and the ratio of methanol volume to cavity volume influence not only the plasma jet diffusive combustion process but also the maximum combustion pressure. In cases of small orifice diameter, the plasma jet diffusive combustion is not recognized, and the maximum combustion pressure increases as the orifice area becomes large.
Technical Paper

Simultaneous measurements of absorption and emission in preflame reaction under knocking operation

2000-06-12
2000-05-0159
There is an urgent need today to improve the thermal efficiency of spark- ignition (SI) engines in order to reduce carbon dioxide emission and conserve energy in an effort to prevent global warming. However, a major obstacle to improving thermal efficiency by raising the compression ratio of SI engine is the easily occurrence of engine knocking. The result of studies done by numerous researchers have shown that knocking is an abnormal combustion in which the unburned gas in the end zone of the combustion chamber autoignites. However, the combustion reaction mechanism from autoignition to the occurrence of knocking is still not fully understood. The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.
Technical Paper

Propagation Processes of Newly Developed Plasma Jet Igniter

2000-06-12
2000-05-0014
In plasma jet ignition, combustion enhancement effects occur toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of cylindrically shaped combustion chamber, plasma jet should issue toward the round combustion chamber wall. The plasma jet igniter that had an annular circular orifice has been developed. The purpose of this study is to elucidate the relationship between the newly developed plasma jet igniter configuration and the combustion enhancement effects. In this newly developed plasma jet igniter, the fine scale turbulence appears on the flame front and flame propagates very rapidly. Plasma jet influences on the flame propagation for long period when the plasma jet igniter has issuing angle 90 [deg.] and large cavity volume. However, in the early stage of combustion, flame front area of issuing angle 45 [deg.] is larger than that of 90 [deg.], because the initial flame kernel is formed by the plasma jet.
Technical Paper

An Experimental Study Concerning the influence of Hot Residual Gas On Combustion

2000-01-15
2000-01-1419
This research focused on the light emission behavior of the OH radical (characteristic spectrum of 306.4 [nm]) that plays a key role in combustion reactions, in order to investigate the influence of the residual gas on autoignition. Authors also analyzed on the heat release and thermodynamic mean temperature due to research activity state of unburned gas. The test engine used was a 2-stroke, air-cooled engine fitted with an exhaust pressure control valve in the exhaust manifold. Raising the exhaust pressure forcibly recirculated more exhaust gas internally. When a certain level of internal EGR is forcibly applied, the temperature of the unburned end gas is raised on account of heat transfer from the hot residual gas and also due to compression by piston motion. As a result, the unburned end gas becomes active and autoignition tends to occur.
Technical Paper

Simultaneous Analysis of Light Absorption and Emission in Preflame Reactions under Knocking Operation

2000-01-15
2000-01-1416
The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.(1-3) Absorption spectroscopy was used to measure the behavior of HCHO and OH radicals during a progression from normal combustion to knocking operation. Emission spectroscopic measurements were obtained in the same way that radical added HCO. Radical behavior in preflame reactions was thus examined on the basis of simultaneous measurements, which combined each absorption wavelength with three emission wavelength by using a monochromator and a newly developed polychromator.(4-5) When n-heptane (0 RON) and blended fuel (50 RON) were used as test fuel, it was observed that radical behavior differed between normal combustion and knocking operation and a duration of the preflame reaction was shorter during the progression from normal combustion to a condition of knocking.
Technical Paper

Performance of Newly Developed Plasma Jet Igniter

1999-09-28
1999-01-3327
The investigation regarding the performance of newly developed plasma jet igniter is explored by using vessel. In plasma jet ignition, combustion enhancement effects occur toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of cylindrically shaped combustion chamber, plasma jet should issue toward the round combustion chamber wall. The plasma jet igniter that had a concentric circular orifice has been developed. The maximum combustion pressure increases and the burning period decreases with increasing the cavity volume. This feature is similar to that of the ordinary plasma jet igniter. However, the combustion enhancement effect is almost independent of the orifice area.
Technical Paper

Relationship between Plasma Jet and Newly Developed Plasma Jet Igniter

1998-10-19
982564
In plasma jet ignition, combustion enhancement effects are caused toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of cylindrically shaped combustion chamber, the plasma jet should issues toward the round combustion chamber wall. The plasma jet igniter that had a concentric circular orifice has been developed. It is expected that the plasma jet is issued and is diffused from concentric circular orifice toward the combustion chamber wall. Relationship between plasma jet and igniter configuration was experimentally clarified. Plasma jet can issue from the entire concentric circular orifice for some igniter. Plasma jet is extended with increasing concentric circular orifice area. Plasma jet penetration increases with increasing concentric circular orifice width.
X